
Lightlab Documentation
Release 1.1.0

Alex Tait, Thomas Ferreira de Lima

Jul 14, 2020

Contents:

1 Pre-requisites 3
1.1 Hardware . 3
1.2 pyvisa . 3

2 Installation 5
2.1 Installation Instructions . 5
2.2 Getting Started to Python, Jupyter, git . 15
2.3 Making your changes to lightlab . 26
2.4 Tutorials . 56
2.5 Miscellaneous Documentation . 81

3 API 91
3.1 lightlab package . 91
3.2 tests package . 187

Bibliography 189

Python Module Index 191

Index 193

i

ii

Lightlab Documentation, Release 1.1.0

This package offers the ability to control multi-instrument experiments, and to collect and store data and
methods very efficiently. It was developed by researchers in an integrated photonics lab (hence lightlab)
with equipment mostly controlled by the GPIB protocol. It can be used as a combination of these three
tasks:

1. Consolidated multi-instrument remote control

2. Virtual laboratory environments: repeatable, shareable

3. Utilities for experimental research: from serial comm. to testing, analysis, gathering, post-
processing – to paper-ready plotting

4. All structured in python

Fig. 1: lightlab in a Jupyter notebook

We wrote this documentation with love to all young experimental researchers that are not necessarily familiar with
all the software tools introduced here. We attempted to include how-tos at every step to make sure everyone can get
through the initial steps.

Warning: This is not a pure software package. Lightlab needs to be run in a particular configuration. Before
you continue, carefully read the Pre-requisites and the Getting Started to Python, Jupyter, git sections. It contains
necessary information about setup steps you need to take care before starting.

Contents: 1

Lightlab Documentation, Release 1.1.0

2 Contents:

CHAPTER 1

Pre-requisites

If you intend to perform any kind of experiment automation, please read this section carefully. However,
to load and visualize data, or to run a virtual experiment, the following is not needed.

1.1 Hardware

In order to enjoy lightlab’s experiment control capabilities, we assume that you have VISA compatible
hardware: at least one computer with a GPIB card or USB-GPIB converter; one instrument; and your
favorite VISA driver installed. Just kidding, there is a one-company monopoly on that (see pyvisa).

There are other devices or GPIB controllers that are not VISA-compliant and do not need any driver
installation, and can be used directly via a TCP socket. Prologix, for example, offers a GPIB-ethernet
controller with a built-in TCP socket server. We have included a driver for that in lightlab (see Using and
creating drivers for instruments).

1.2 pyvisa

We rely heavily on pyvisa for instrument control. It provides a wrapper layer for a VISA backend that
you have to install in your computer prior to using lightlab. This is typically going to be a National
Instruments backend, but the pyvisa team is working on a new pure-python backend (pyvisa-py). Refer to
pyvisa_installation for installation instructions.

Currently we are also working with python3. This might present some minor inconvenience in installation,
but it allows us to write code that will be supported in the long term. All dependencies are easily available
in python3.

Proceed with enjoying lightlab once you have the following output:

>>> import visa
>>> rm = visa.ResourceManager()

(continues on next page)

3

http://prologix.biz/gpib-ethernet-controller.html
https://github.com/pyvisa/pyvisa
https://github.com/pyvisa/pyvisa-py
http://pyvisa.readthedocs.io/en/stable/getting.html

Lightlab Documentation, Release 1.1.0

(continued from previous page)

>>> print(rm.list_resources())
('GPIB0::20::INSTR', 'GPIB1::24::INSTR', 'ASRL1::INSTR', 'ASRL2::INSTR',
→˓'ASRL3::INSTR', 'ASRL4::INSTR')

4 Chapter 1. Pre-requisites

CHAPTER 2

Installation

You can install the lightlab package like any other python package:

pip install lightlab

If you are new to python programming, jupyter notebooks, you might want to sit down and patiently read the Getting
Started to Python, Jupyter, git Pages. If you want to develop and write drivers, good for you. It’s on github along with
guides on contributing and can be cloned by:

git clone https://github.com/lightwave-lab/lightlab.git

Your environment will be slightly different if you’re developing, described here.

If you need more detailed installation instructions, they are available in Installation Instructions.

2.1 Installation Instructions

2.1.1 Pre-requisites

If you intend to perform any kind of experiment automation, please read this section carefully. However,
to load and visualize data, or to run a virtual experiment, the following is not needed.

Hardware

In order to enjoy lightlab’s experiment control capabilities, we assume that you have VISA compatible
hardware: at least one computer with a GPIB card or USB-GPIB converter; one instrument; and your
favorite VISA driver installed. Just kidding, there is a one-company monopoly on that (see below).

5

https://github.com/lightwave-lab/lightlab

Lightlab Documentation, Release 1.1.0

pyvisa

We rely heavily on pyvisa for instrument control. It provides a wrapper layer for a VISA backend that
you have to install in your computer prior to using lightlab. This is typically going to be a National
Instruments backend, but the pyvisa team is working on a new pure-python backend (pyvisa-py). Refer to
pyvisa_installation for installation instructions. If you need to install in ubuntu, see ubuntu_installation.

Warning: Currently we are also working with python3. This might present some minor inconvenience in instal-
lation, but it allows us to write code that will be supported in the long term. All dependencies are easily available
in python3 and are automatically installed with pip.

Proceed with installing lightlab once you have something that looks like the following output:

>>> import visa
>>> rm = visa.ResourceManager()
>>> print(rm.list_resources())
('GPIB0::20::INSTR', 'GPIB1::24::INSTR', 'ASRL1::INSTR', 'ASRL2::INSTR', 'ASRL3::INSTR
→˓', 'ASRL4::INSTR')

2.1.2 Installation in personal computer

Regular users can install lightlab with pip:

$ pip install lightlab

For more experienced users: install the lightlab package like any other python package, after having downloaded the
project from github.:

$ python3 install setup.py

If you are new to python programming, jupyter notebooks, you might want to sit down and patiently read the Getting
Started to Python, Jupyter, git Pages.

More detailed installation instructions

• Installation Instructions

– Pre-requisites

* Hardware

* pyvisa

– Installation in personal computer

– Server Installation Instructions (Advanced)

– Centrallized server (Tutorial)

* Host machines

· Installing NI-visa on Windows

· Installing NI-visa on Windows

· Installing NI-visa (32-bit) on Ubuntu (64-bit)

6 Chapter 2. Installation

https://github.com/pyvisa/pyvisa
https://github.com/pyvisa/pyvisa-py
http://pyvisa.readthedocs.io/en/stable/getting.html

Lightlab Documentation, Release 1.1.0

· Opening NI-visa servers on all hosts

* Instrumentation server machine

· User configuration

· Install basic tools globally

· Initializing labstate, setting lab accessors

· Handling virtual environments that install lightlab

· Running a jupyter server for the regular users

· If you have developers, set up CI for your own fork (optional)

* User: getting started

· Connecting to the instrumentation server

· Make an RSA key

· Faster logging on

· Using jupyter notebooks

2.1.3 Server Installation Instructions (Advanced)

The state module saves information about instruments, benches, and remote hosts in a file called ~/.lightlab/
labstate.json. Normally you wouldn’t have to change the location of this file. But if you so desired to, it suffices
to use the shell utility lightlab:

$ lightlab config set labstate.filepath '~/.lightlab/newlocation.json'
$ lightlab config get labstate.filepath
labstate.filepath: ~/.lightlab/newlocation.json

It is also possible to set a system default for all users with the --system flag:

$ sudo lightlab config --system set labstate.filepath /usr/local/etc/lightlab/
→˓labstate.json
Password:
----saving /usr/local/etc/lightlab.conf----
[labstate]
filepath = /usr/local/etc/lightlab/labstate.json

But all users must have write access to that file in order to make their own alterations. A backup is generated every
time a new version of labstate is saved in the following format labstate_{timestamp}.json.

2.1.4 Centrallized server (Tutorial)

The instructions below allow you to control multiple instruments connected to a network of hosts from a single loca-
tion.

The basic setup is that there is one central lab computer that is the “instrumentation server.” Other computers connect
to the instruments through GPIB/USB/etc. These are “hosts.” All of the hosts need National Instruments (NI) Mea-
surement and Automation eXplorer (MAX). Start a NI Visa Server in each host, and naturally connect from the server
via pyvisa.

2.1. Installation Instructions 7

Lightlab Documentation, Release 1.1.0

Host machines

You first need to install NI-VISA in all machines, including the server, which can also play the dual role of a host,
since it can also be connected to instruments. Download NI-VISA here. Installing for MacOS, Windows, Linux
(Fedora-like) was a matter of following NI’s instructions. Installing in ubuntu machines was a little trickier, but here
is what worked for us.

Installing NI-visa on Windows

Todo: Include instructions.

Installing NI-visa on Windows

Warning: Currently not supported.

Installing NI-visa (32-bit) on Ubuntu (64-bit)

Followed instructions found here, but in computers with EFI secure boot, like all modern ones, we need to sign the
kernel modules for and add the certificate to the EFI. For this, follow these instructions.

Sign all modules in /lib/modules/newest_kernel/kernel/natinst/*/*/.ko

Run the following after sudo updateNIdrivers (reboot required!):

kofiles=$(find /lib/modules/$(uname -r)/kernel/natinst | grep .ko)
for kofile in $kofiles; do

sudo /usr/src/linux-headers-$(uname -r)/scripts/sign-file sha256 /home/tlima/MOK.
→˓priv /home/tlima/MOK.der $kofile
done

Then start nipalk:

sudo modprobe nipalk
sudo /etc/init.d/nipal start

Test with:

visaconf # for configuring, for example, GPIB interfaces
NIvisaic # for testing instrument control

Opening NI-visa servers on all hosts

Open NI-MAX. In the main menu bar: Tools > NI-VISA > VISA options. This will open a panel.

In My System > VISA Server, check “Run the VISA server on startup.” Click “Run Server Now.”

In My System > VISA Server > Security, click the Add button, and put in a “*” under Remote Addresses. This white
flags all other computers.

Click Save at the top left.

8 Chapter 2. Installation

http://www.ni.com/visa/
http://forums.ni.com/t5/Linux-Users/Using-NI-VISA-with-Arch-Linux-or-Ubuntu-14-04/gpm-p/3462361#M2287
http://askubuntu.com/questions/762254/why-do-i-get-required-key-not-available-when-install-3rd-party-kernel-modules

Lightlab Documentation, Release 1.1.0

2.1. Installation Instructions 9

Lightlab Documentation, Release 1.1.0

Troubleshooting

If you have been using Tektronix drivers, there might be a conflict with which VISA implementation will get used.
These can be managed in the Conflict Manager tab.

General settings > Passports: Tulip sometimes gives trouble. The box should be checked, at least on 32-bit systems.
Bugs were un-reproducible for us.

Instrumentation server machine

The below assumes that this system is Linux.

User configuration

There are several types of users.

• sysadmin (you)

• super-users a.k.a. root (you, possibly other lab members who know UNIX)

• lightlab developers

• lightlab users

• those with lab access, meaning they are allowed to configure and access hardware (you, most grad students)

• those without lab access, meaning they can still see data and write data analysis code (most undergrads)

In the below examples, we will use the following usernames

10 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

2.1. Installation Instructions 11

Lightlab Documentation, Release 1.1.0

• arthur: you, sysadmin

• lancelot: a grad student and lightlab developer

• bedivere: a grad student user

• galahad: an undergrad who is anayzing bedivere’s data

Set up a user on this computer corresponding to every user who will be using the lab. Make sure port 22 is open for
ssh access. Give them all a tutorial on ssh, python, and ipython. Give yourself and lancelot a tutorial on git, SSHFS,
pip, and jupyter.

Install basic tools globally

lightlab requires python 3.6. You also will need to use virtual environments to execute compiled code, install and
freeze dependencies, and launch IPython servers. The first time, install these on your system environment:

$ sudo apt-get update
$ sudo apt-get install python3.6

$ sudo apt-get install python-pip python-dev build-essential
$ sudo pip install --upgrade pip
$ sudo pip install --upgrade virtualenv

For different versions of Ubuntu/Linux, you are on your own. See here and there.

Initializing labstate, setting lab accessors

Make a jupyter “user”:

sudo useradd -m jupyter
sudo passwd jupyter
<enter a new password twice>

Make a jupyter group specifying who is allowed to run jupyter servers and change the labstate:

sudo groupadd jupyter
sudo usermod -a -G jupyter arthur
sudo usermod -a -G jupyter lancelot
sudo usermod -a -G jupyter bedivere
<do not add galahad>

The jupyter user home directory can be accessed by any user and written only by the jupyter users:

cd /home
sudo chown root jupyter
sudo chgrp jupyter jupyter
sudo chmod a+r jupyter
sudo chmod a+x jupyter
sudo chmod g+w jupyter

We want to place labstate.json in /home/jupyter/labstate.json. As documented above, this can be
done system-wide with:

Running from an environment in which lightlab is installed
sudo lightlab config --system set labstate.filepath /home/jupyter/labstate.json

12 Chapter 2. Installation

https://www.saltycrane.com/blog/2010/02/how-install-pip-ubuntu/
https://askubuntu.com/questions/865554/how-do-i-install-python-3-6-using-apt-get

Lightlab Documentation, Release 1.1.0

If anybody outside of group jupyter tries to change the labstate, it will not work.

The first time labstate is initialized, you’ll want to add the hosts and benches in the lab. This is documented in Making
and changing the lab state.

Handling virtual environments that install lightlab

Install virtualenvwrapper with pip.

To make all users see the same virtualenvwrapper, create a file in /etc/profile.d/virtualenvwrapper.sh
and place the following bash script:

Working with multiple virtualenv's
export WORKON_HOME=/home/jupyter/Envs
source /usr/local/bin/virtualenvwrapper.sh

Note: Make sure that /home/jupyter/Envs belongs to the group jupyter and that permissions are set so that
users necessary can have access to it.

Then, follow the instructions (adapted from virtualenvwrapper.sh’s source code):

1. Create a directory to hold the virtual environments.
(mkdir /home/jupyter/Envs).
5. Run: workon
6. A list of environments, empty, is printed.
7. Run: mkvirtualenv lightlab
8. Run: workon
9. This time, the "lightlab" environment is included.
10. Run: workon lightlab
11. The virtual environment lightlab is activated.

Then, every user in the machine can call workon lightlab to activate lightlab’s virtualenvironment.

Running a jupyter server for the regular users

Important: Securing a jupyter notebook server.

Please follow instructions in Securing a notebook server if you and more user plan to connect to the server remotely.

Jupyter notebooks can run arbitrary system commands. Since jupyter does not yet support key authentication, the only
protection is strong passwords. There should never be a jupyter server launched by root.

Developers can run their own virtual environments, but there are two reasons to have a centralized one like this. 1)
keeps data and notebooks centralized so they can be shared to outsiders and git-tracked easily, 2) serves users who are
not developers and who therefore do not need an environment that links dynamically to lightlab.

Create a directory for your lab’s data gathering notebooks and data. Ours is called lightdata:

cd /home/jupyter
mkdir lightdata
chgrp lightdata jupyter
chmod a+r lightdata
chmod a+x lightdata

(continues on next page)

2.1. Installation Instructions 13

http://virtualenvwrapper.readthedocs.io/en/latest/index.html
http://jupyter-notebook.readthedocs.io/en/stable/public_server.html#securing-a-notebook-server

Lightlab Documentation, Release 1.1.0

(continued from previous page)

chmod g+w lightdata
chmod +t lightdata

The last line sets the sticky bit. That means when a file is created within that directory, it can only be modified or
deleted by its owner (i.e. the person that created it).

Finally, after having adapted security instructions above, you should have an SSL certificate and port configuration
setup in /home/username/.jupyter/jupyter_notebook_config.py, start your jupyter server from
within the virtual environment by doing the following:

logged in as any user in jupyter group
cd /home/jupyter/lightdata
workon lightlab

in case you have just created this virtual environment
pip install lightlab

and other packages you find useful. See our full list
in dev-requirements.txt in our github page.
pip install jupyter pyusb pyserial

set a password for your notebook. This will be stored
in /home/username/.jupyter/jupyter_notebook_config.json
jupyter notebook password

starts the jupyter notebook process and stays alive
until stopped with Ctrl-C
jupyter notebook

If you have developers, set up CI for your own fork (optional)

If you are constantly helping with the development of lightlab, it is possible to utilize CI (continuous integration) to
automate reinstallation of the package. In our case, we use Gitlab CI/CD in a different machine to trigger the deploy
in the instrumentation server.

User: getting started

These are instructions that you may give to potential users in this setup. We recommend you placing the source code
of lightlab inside /home/jupyter/lightdata/lightlab for their convenience. The source code has tutorial
notebooks in lightlab/notebooks. We also recommend placing this documentation in docs, which can be
modified by you, to make it easier. Jupyter servers can render .md files and can also serve html pages such as this
one.

Connecting to the instrumentation server

First, make sure that your have a user account set up on the your server. Let’s say your domain is “school.edu” First,
do a manual log on to change your password to a good password. From your local machine:

$ ssh -p 22 <remote username>@<server hostname>.school.edu
<Enter old password>
$ passwd
<Enter old, default password, then the new one>

14 Chapter 2. Installation

https://about.gitlab.com/features/gitlab-ci-cd/

Lightlab Documentation, Release 1.1.0

Make an RSA key

On your local machine:

ssh-keygen -t rsa -C "your.email@school.edu" -b 4096

You do not have to make a password on your ssh key twice, so press enter twice. Then copy that key to the server
with:

$ ssh-copy-id <remote username>@<server hostname>.school.edu
<Enter new password>

Faster logging on

In your local machine, add the following lines to the file ~/.ssh/config:

Host <short name>
HostName <server name>.school.edu
User <remote username>
Port 22
IdentityFile ~/.ssh/id_rsa

You can now ssh <short name>, but it is recommended that you use MOSH to connect to the server:

$ mosh <short name>

MOSH is great for spotty connections, or if you want to close your computer and reopen the ssh session automatically.

Using jupyter notebooks

Jupyter notebooks are interactive python sessions that run in a web browser. If you are just a user, your sysadmin
will set up a notebook server and give you a URL and password. Some examples can be found in the lightlab/
notebooks/Tests directory.

2.2 Getting Started to Python, Jupyter, git

Todo: Include more tutorial pages and useful links for intriductory python.

2.2.1 An engineer’s guide to modern lab control

Author: Thomas Ferreira de Lima (tlima@princeton.edu)

Introduction

Over the years, software engineering has evolved into a very prominent field that penetrates all industrial sectors. Its
core principles and philosophy was to make life easier for consumers to achieve their goals. That was when Apple and
Microsoft were created. Then, as the field evolved, it has become important to make software engineering as inclusive
as possible to new “developers”, and to make collaboration as seamless as possible. This is the age of the apps. Now,

2.2. Getting Started to Python, Jupyter, git 15

https://mosh.org/

Lightlab Documentation, Release 1.1.0

software programming is becoming considered as fundamental as math and science, and are starting to enter school
curricula.

Meanwhile, in academic circles and other engineering industries have lagged in software sophistication. Here, I
propose a few techniques that we can borrow from software engineering to make our collaborative work in the lab
more productive. My inspiration draws from the fact that in software engineering teams, the source code describes the
entirety of a product. And if it is well documented, a new member of the team can learn and understand how it works
in high or low level without the need for person-to-person training. In other words, all knowledge is documented in
source code, instead of a mind hive. This is not the case in research groups. When a PhD student leaves, all his or her
know-how suddenly exits the lab.

The concepts

Software programming

The first tool that is instrumental to this method is software programming. Computers were created with the intention
to automate or facilitate menial tasks. The tendency is to delegate more and more of our labor to the machine, so we
can move on to the bigger picture.

In our lab, a scientific experiment depends on controlling many instruments at the same time. The more complex the
experiment, as they ten to be with integrated circuits, the more instruments are needed and the more complicated the
calibration procedures and execution algorithms are. Most of these instruments are designed to have an electronic
interface compatible with computers. These can be chiefly USB, which stands for Universal Serial Bus, or GPIB, for
General Purpose Interface Bus, or Ethernet. Through these ports, computers can launch commands and probe results
at the speed that the interface supports. As a result, one can control instrumentation of an experiment via the computer,
i.e. via software. This is called a cyber-physical system. But this is not all. Software can also be used to perform any
kind of algorithm. Which means that in a cyber-physical host, an experiment can be defined entirely by a computer
program.

Computers programs can be written in a programming language, such as Python, MATLAB, C, Fortran, Java etc.
There are many, but they all have the same purpose: to translate english words into machine code. Over a century
of math, engineering, logic, and language science has passed since Ada Lovelace wrote the first algorithm intended
for a machine. Python is a very modern language, still in active development, that became ubiquitous in the software
engineering world due to its flexibility. It is considered a high-level language, meaning that its representation is
very close to plain English, while its machine inner-workings are very hidden insides. Normally, these programming
languages result in programs that are slower than the ones written in a more low-level language. Python’s popularity
stems from the fact that it can directly interface with a lot of these other faster languages, and it is fast enough for
most people with modern computers. It also offers myriad open-source libraries that offer everything from web apps
to numerical simulation to deep learning. So Python nowadays is the favorite first language of scientists, engineers,
developers, students etc.

Version control

It is possible to use a particular programming language to write routines and small scripts that can have inputs, crunch
some numbers, and produce outputs. However, actual programming languages were created to support Turing com-
plete applications, which support an infinite complexity of internal states and behaviors. When source code became too
complicated, i.e. around the time of the Apollo missions, computer scientists invented object-oriented programming,
which made possible the modularization of source codes. This meant that programmers could change a piece of the
code that interacted with the entire application without necessarily having to fully understand the entire source code.
As a result, programmers needed a central location to store the code so they could edit it at the same time. This was
called version control. Version control has become standard in all industries that deal with software. It is so efficient
that it allows thousands of programmers to collaborate on an opensource project, each one submitting small changes,
without risking introducing new bugs.

16 Chapter 2. Installation

https://en.wikipedia.org/wiki/Ada_Lovelace
https://github.com/chrislgarry/Apollo-11

Lightlab Documentation, Release 1.1.0

There are many technical ways to achieve version control, and many different software written to accommodate these
techniques. The most popular are Git, Subversion, Mercurial and Microsoft’s Team Foundation Server. Like it or not,
today, Git dominates the version control software arena, and is rendering the others rather obsolete. So let’s talk about
version control as designed by Git’s developers.

2.2. Getting Started to Python, Jupyter, git 17

Lightlab Documentation, Release 1.1.0

Version control with Git

The most basic concept of version control is revision tracking. Every revision to the source code is recorded by a
“commit”. The commit records the changes made by the user respective to the previous revision. You can think of it
as a linear graph, where the nodes represent the different revisions of the entire source code and the arrows the history
connecting them. This is useful because the history of any project is automatically recorded and documented. Teams
also use this feature to track how active their developers are.

18 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

Commits are created and stored in what is called a repository, which is a data structure that keeps track of all commits
made in history. In Git, this repository is stored in your computer, so that you can interact with it offline. The process
typically works as follows. You work on the documents and code normally with your favorite editor, changing them
on disk. When you have finished a desired set of changes, you create a commit and document what you have included
in that particular commit, so that future you or collaborators have a sense of what changes were made before looking
into the code. When a commit is triggered, the software automatically detects the changes that were made to every
file, including whether it was deleted, renamed, or whether its metadata was changed. It then creates a manifest of all
these changes, compresses it, and generate what is then called a “commit”. After that, the commit is automatically
stored in your “local repository”, which is hidden inside a folder named “.git”.

git commit -m “message”

There are two concepts which, at this point, confuses most people unfamiliar with version control: staging and remote
vs. local. But they are not complicated at all. The concept of staging can be understood by the following example. Say
that there is a project/repository with two main parts: a numerical simulation part, and an experimental data processing
part. Their code is contained in different files. You have made changes to both of these files because you are working
on them at the same time, but you have finished implementing a desired change in the simulation file, but the one on
experimental data is still in progress. Therefore, if you want to commit the changes you have made on the simulations
while ignoring the rest, a staging step is necessary prior to commit. You add the simulation file to what is called a
stage, leaving the experimental processing out of the stage. This allows you to commit only what is on the stage.

Edit simulation file
git add simulation.py
git commit -m “finished simulation”

Another interesting property of Git is its ability to separate remote and local copies of the repository. In order to make
the source code available to others, it needs to be uploaded somewhere remote. That is the raison d’être of a remote
repository. There are web services that can host remote repositories, most famously GitHub, where virtually all the
opensource projects are stored nowadays. The local copy of the repository is an exact and entire copy of the remote
one, that is why one must “clone” it to the local computer. Clone, in this case, means download the current version
plus all other versions in history. Therefore, after a commit is created in the local repository, it must be “pushed” to
the remote copy so others can see it and “pull” to their local copy.

2.2. Getting Started to Python, Jupyter, git 19

Lightlab Documentation, Release 1.1.0

Edit simulation file
git add simulation.py
git commit -m “finished simulation”
git push

20 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

The other main property of Git is that it can automatically “merge” a number of edits together in one step. Its algorithm
is very powerful, works flawlessly when it can, and falls back to human intervention in case of “conflicts”. When two
collaborators create local commits, their history tree forks into two parallel versions that need to be conciliated. If

2.2. Getting Started to Python, Jupyter, git 21

Lightlab Documentation, Release 1.1.0

one pushes first, the other’s push will fail and abort, because its local repository does not agree with the most recent
state of the remote repository. So the proper procedure is to sync the local with the remote by “pulling” changes from
remote:

Edit simulation file
git add simulation.py
git commit -m “finished simulation”
git pull # this is where the merge happens
git push

The merge algorithm works in the following way. It attempts to add all modifications from both revisions to a stage.
First, if the modified files are different, then both files are simply added to the stage. If the same file is modified, then
Git will start a “diff” operation. It will go through line by line on each revision of the file until it detects a discrepancy.
The revisions considered are the baseline (the revision agreed upon prior to the commit), the remote, and the local.
Each discrepancy is judged as addition, deletion or simply edits. If Git detects a discrepancy both in the remote and
the local commits, then a conflict is triggered, and the user must resolve it themselves by choosing to maintain changes
from one revision or the other, or altering the line altogether. After the merge operation is finished, all files are added
to the stage and a new commit is created. This commit is special because it has two “parents”, so the history graph
will look like three branches which merged together. Note that this process is designed such that no changes are lost
during merge. It is an automatic way of doing a very tedious task that humans used to do in the past.

Here is a tutorial on Git.

Servers, hosts and clients

In order to make this all work, we need servers, hosts, and clients. A computer server can refer to the software or
the device used in the “client—server” model. So you can have many software servers running on different server
machines. As you can see, it can get complicated really fast. So unless otherwise specified, let us understand the word
server as powerful computers that are expected to be turned on and connected to the network at all times.

A host is any computer (or device) connected to the network. So all servers are hosts, but not all hosts are servers. If
one wants to be able to control a certain instrument via the network, this instrument should either be a host itself or
be connected to one via some interface bus. There are so many ways to do this that it would be counterproductive to
introduce them all. But it is important to understand why these hosts cannot be servers. Simply, when you connect
a new instrument to the host, sometimes one must install new software, update software drivers, or even reboot the
machine. Stuff that cannot be allowed on a server that serves multiple clients at the same time.

Finally, a client is a workstation that depends on resources offered by the server. It can be our personal computers.

22 Chapter 2. Installation

https://git-scm.com/docs/gittutorial
https://en.wikipedia.org/wiki/Client\T1\textendash {}server_model

Lightlab Documentation, Release 1.1.0

In most research laboratories that require some sort of automation, researchers typically use one single computer to
directly connect to the instruments that execute the experiment. A scientist can do this, download the data to her
personal computer, go home, and crunch the numbers. This has been a good enough practice for simple experiments
where there was a single person dealing with the instrumentation and the data analysis. However, when multiple
persons need to have access to the most recent data, or even access to the experiment, it makes more sense to have
a client—server—host implementation. In software engineering, the source code of some large projects such as
Facebook grew to hundreds of gigabytes, with compilation times up to days. For them, having the source code stored
and compiled on a supercomputer server is crucial.

The tools

In the following sections, I describe the tools that we need to be used to accommodate a team of two or more researchers
operating various experiments in lab with multiple instruments connected to different hosts. Based on the the concepts
described above, we need a central Git repository server, a server that connects to all hosts and a program that controls
instruments and collects data from the hosts.

2.2. Getting Started to Python, Jupyter, git 23

Lightlab Documentation, Release 1.1.0

The Git server

As previously mentioned, the Git repository is a set of files that can be stored anywhere. There are services online
that offer free storage for opensource projects or paid storage for closed source projects. The most famous one is
github.com. It is also possible to install a Git (software) server on a local server for free, so long as you possess the
hardware. Gitlab, for example, has the same functionality of Github and it is also easy to use and install. It allows the
admins to control which users have access to which repositories, which can be useful to protect confidential data. And
since Git repositories are the same everywhere, they can be exported to other services very easily.

24 Chapter 2. Installation

https://docs.gitlab.com/ce/

Lightlab Documentation, Release 1.1.0

The instrumentation server

Another server has to be created and loaded with drivers from the instrument vendors, and also loaded with software
modules that will support connecting to the hosts. This server can be created in the same machine as the Git one, but it
is a good idea to separate them, because Git has to be extremely available at all times to everyone so that collaboration
does not stop. It is quite a disturbance when Git goes offline, even if once a month, whereas the instrumentation server
could go offline routinely for maintenance.

Software programming with Python notebooks

Python is a dynamic programming language, which in computer science means that it can be executed line by line
instead of compiled into machine code. Because of this, Python can be used as a scripting language, like MATLAB,
as well as a full-fledged object-oriented programming language, like C++. This flexibility means that one can build
computer programs that are installed into the operational system of the computer, which can be accessed by Python
scripts in the same computer or in another computer in the network. These programs, in Python language, are called
packages. Other languages call them libraries, but essentially it means the same thing.

A Jupyter notebook is an “opensource web application that allows you to create and share documents that contain live
code, equations, visualizations and narrative text.” It is a kind of document that exists “live” in a server, like Google
Doc. It is interactive and can be shared with other users. Here is a list of interesting jupyter notebooks. It can be used
to plot data beautifully, write LaTeX annotations, and store logic and results in the same file! If this notebook appli-
cation is installed in the instrumentation server, one gains the ability to interactively control experiments, collect data,
analyze it, and plot publication-quality figures on the same notebook. This workflow, combined with the possibility
of “versioning” the notebooks in a Git repository, is a superior way of making sure the experiments are reproducible,
well documented, and self-explanatory to anyone in the lab who wants to start afresh.

2.2. Getting Started to Python, Jupyter, git 25

http://jupyter.org
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

Lightlab Documentation, Release 1.1.0

The lightlab package

The lightlab Python package is being developed in the Lightwave Lab to be essentially our own version of LabVIEW
+ MATLAB. The opensource community built enough libraries for Python that would render these two software
obsolete. While many companies still release drivers and plugins for LabVIEW and MATLAB, they are also easy to
interface with opensource libraries. As of 2017, we can essentially control every remote-controlled instrument with
the lightlab package.

The lightlab package contains three things: instrument drivers, laboratory virtualization, and calibration models for
photonic devices. (It has been decided to remove the calibration models from the project, and give it its own package,
so I will not explore it here).

Instrument drivers

Instrument drivers are pieces of code responsible to command and control instruments. For example, a Keithley 2400
source meter can be controlled via GPIB protocol. National Instruments offers a set of low-level drivers (NI-VISA)
that can be installed in Linux or Windows hosts, which allows us to establish connection, send and receive GPIB (or,
more modernly, VISA) commands easily. These are files that have to be installed directly into the operational system.
Then, we can install an opensource package called PyVISA, written in Python, which interfaces with the low-level NI-
VISA drivers. The lightlab package contains an object built onto PyVISA, representing the Keithley 2400 instrument.
This object contains functions that can translate commands such as turn on, turn off, ramp up current or voltage, read
resistance, voltage or current values; into VISA commands that can be sent through the NI-VISA drivers. This object
can be accessed directly from the Jupyter notebook.

Laboratory virtualization (under development)

Another thing present in the lightlab package is the virtualization of instruments. The idea is very well suited for
automated testing and data collection of devices. In this module, every object that we interact with in lab will have a
corresponding Python object. An instrument is an object that understand where the instrument is located in lab, where
it is connected to, and via what host it can be accessed to. Similarly, a device object contains a map of different ports
it can be connected to. This way, users can design the experiment entirely on the computer with a Python notebook,
simulate the expected behavior, and using the same code, perform the experiment in real life. This creates the idea
of a “source code “ of the experiment, which can be executed by future users or users in different labs with different
instruments.

Appendix

Bash

Digital security

Private keys

Two-factor authentication

2.3 Making your changes to lightlab

The following texts should help you in the process or making changes to lightlab itself. If you are looking for a way to
include your own instrument driver, you will find instructions in Using and creating drivers for instruments. After you

26 Chapter 2. Installation

http://www.ni.com/tutorial/3702/en/
http://pyvisa.readthedocs.io/en/stable/

Lightlab Documentation, Release 1.1.0

are done, please consider submitting a pull request via github! :) We the community will be glad to provide feedback.

2.3.1 Developer Guide

This section covers topics that have great documentation online. The main differences in this workflow stem from the
hardware aspect of lightlab. That means almost all development should occur on the machine in lab that is going to be
accessing the instruments. First, follow the instructions for connecting to the instrumentation server for users.

In this section

• Setting up Git

• File system sync

• Example directory structure and environment: Non-developers

• Example directory structure and environment: Developers

– Running jupyter from your myWork environment

* Password protect

* Launch the server

* Git and jupyter

– Running monitor server from your myWork environment

– Testing myWork

Setting up Git

Your sysadmin should go on github and fork the repo into their or the lab’s github account. Alternatively (not recom-
mended), you can download the project and make a new repo on an internal Git server, like GitLab.

On the instrumentation server, go in and clone that repo. When you develop, it should be on a branch based off of the
development branch. There is no need to clone the repo to your local computer.

File system sync

It is recommended that you use SSHFS to mirror your work to your local computer, so you can use your favorite text
editor. While you are editing on your local machine, you should have a ssh session on the remote machine in order to
run the commands.

1. Install SSHFS on your local system.

• Linux: sudo apt-get install sshfs

• OSX: Download binaries and then

– Install FUSE for macOS

– Install SSHFS for macOS

2. Make shortcuts in your .bashrc or .bash_profile

Linux:

2.3. Making your changes to lightlab 27

https://osxfuse.github.io

Lightlab Documentation, Release 1.1.0

alias mntlight='sshfs <server>:/home/lancelot/Documents /path/to/local/dir -C -o
→˓allow_other'
alias umntlight='fusermount -u /path/to/local/dir'

MacOS:

alias mntlight='sshfs <server>:/home/lancelot/Documents /path/to/local/dir -C -o
→˓allow_other,auto_cache,reconnect,defer_permissions,noappledouble'
alias umntlight='umount /path/to/local/dir'

4. Now you can mount and unmount your remote calibration-instrumentation folder with:

$ mntlight
$ unmtlight

Example directory structure and environment: Non-developers

Lightlab is meant to be used by other code, usually via jupyter notebooks. We suggest that this user code be in a virtual
environment with the following structure

> bedivere/Documents
| > myWork
| | > .git (optional)
| | requirements.txt
| | Makefile
| | > notebooks
| | | labSetup.ipynb
| | | gatherData.ipynb
| | -
| | > data
| | | someData.pkl
| | -
| -
-

Where the contents of requirements.txt will include “lightlab” and other packages you need for your work.

The Makefile has targets for making a virtual environment and launching jupyter

venv: venv/bin/activate
venv/bin/activate: requirements.txt

test -d venv || virtualenv -p python3 --prompt "(myWork-venv) " --distribute venv
venv/bin/pip install -Ur requirements.txt
touch venv/bin/activate

jupyter:
source venv/bin/activate; jupyter notebook; \

getjpass: venv
venv/bin/python -c 'from notebook.auth import passwd; print(passwd())'

With these things in place, you can run make jupyter have a fully fledged, clean environment with lightlab in-
stalled.

Notebooks contain the procedures used to configure labstate, gather data, save data, analyze data, and make nice plots
you can use in papers. The labSetup.ipynb file will look like this one, but populated with your lab’s sensitive
addresses, ports, namespaces, etc.

28 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

Example directory structure and environment: Developers

If you are developing lightlab, you will likely have some other notebooks to test. Those should go in a different
directory with a different virtual environment. It can be git tracked in a different repo. Here is an example directory
structure:

> lancelot/Documents
| > lightlab
| | > .git
| | Makefile
| | setup.py
| | etc...
| -
| > myWork
| | > .git (optional)
| | requirements.txt
| | Makefile
| | .pathtolightlab
| | > notebooks
| | | labSetup.ipynb
| | | gatherData.ipynb
| | -
| | > data
| | | someData.pkl
| | -
| -
-

Where the Makefile has a modification for dynamic installation of lightlab.

myStuff/Makefile
PATH2LIGHTLABFILE=.pathtolightlab

venv: venv/bin/activate
venv/bin/activate: requirements.txt

test -d venv || virtualenv -p python3 --prompt "(myWork-venv) " --distribute venv
venv/bin/pip install -Ur requirements.txt
touch venv/bin/activate
source venv/bin/activate; venv/bin/pip install -e $(shell cat

→˓$(PATH2LIGHTLABFILE))

The highlighted line will dynamically link the environment to your version of lightlab under development. If you have
autoreload on in ipython, then text changes in lightlab will take effect immediately (excluding adding new methods).
It is important that “lightlab” is not in your requirements.txt file.

The contents of .pathtolightlab are:

/home/lancelot/Documents/lightlab

If myWork is a git repo, your .gitignore should include:

.pathtolightlab

Running jupyter from your myWork environment

2.3. Making your changes to lightlab 29

Lightlab Documentation, Release 1.1.0

Password protect

Jupyter lets you run commands on your machine from a web browser. That is dangerous because any-
body with an iphone can obliviate your computer with rm -rf /, and they can obliviate your research with
currentSource(applyAmps=1e6). Be safe on this one.

On the lab computer, copy and modify the provided template:

$ mkdir ~/.jupyter
$ cp /home/jupyter/.jupyter/jupyter_notebook_config.py ~/.jupyter

then generate a password with:

$ make getjpass
Enter password: <Enters password>
Verify password: <Enters password>

This will produce one line containing a hash of that password of the form:

sha1:b61b...frq

Choose an unused port. Port allocations on your lab computer should be discussed with your group. Let’s say you got
:8885.

When you have a port and a password hash, update the config file:

$ nano ~/.jupyter/jupyter_notebook_config.py

...
Hashed password to use for web authentication.
c.NotebookApp.password = 'sha1:b61b...frq' # hash from above
...
The port the notebook server will listen on.
c.NotebookApp.port = 8885 # port from above

Launch the server

To launch the server from myWork, just run:

$ make jupyter

(see Makefile target above). Except that will lock up your shell session. Instead, you can spin off a process to serve
jupyter in a tmux:

$ tmux new -s myNotebookServer
$ make jupyter
<Ctrl-b, d> # to detach

You can now acces your notebooks anywhere with your password at: https://<server name>.school.
edu:<port>.

If for some reason you want to reconnect to this process, you can use tmux attach-process -t
myNotebookServer or tmux ls followed by picking the right name.

30 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

Git and jupyter

They do not play nice. Here are some strategies for not losing too much work.

Running monitor server from your myWork environment

lightlab offers tools for monitoring progress of long sweeps. See ProgressWriter. These servers are launched
from your own environment, not lightlab’s. So far, this is just for long sweeps that simply tell you how far along they
are, and when they will complete.

First, you must get another port allocated to you, different from the one you used for Jupyter. Put that in a file called
.monitorhostport in myWork (where the Makefile is). Let’s say that port is 8000:

$ echo 8000 > .monitorhostport
$ mkdir progress-monitor

Add the following target to your Makefile:

monitorhost:
(\

source venv/bin/activate; \
cd progress-monitor; \
python3 -m http.server $(shell cat .monitorhostport); \

)

If this is a repo, add the following to .gitignore:

.monitorhostport
progress-monitor/*

To then launch the server from a tmux:

$ tmux new -s myMonitorServer
$ make monitorhost
<Ctrl-b, d> # to detach

Note: I have tried making a daemon launch automatically from the lightlab.util.io library. I have not yet verified that
it is safe, so it is currently disabled.

Todo: How will this work for non-developers?

Testing myWork

It’s not really necessary in this example where there is just a notebook. If you are developing your own library-like
functions, it is generally good practice, but

Never put hardware accessing methods in a unittest

Unittests are designed to be run in an automated way in a repeatable setting. Firstly, the real world is not repeatable.
Secondly, an automated run could do something unintended and damaging to the currently connected devices.

• genindex

2.3. Making your changes to lightlab 31

Lightlab Documentation, Release 1.1.0

• modindex

• search

2.3.2 Contributing to lightlab

We follow this Git branching workflow. Feature branches should base off of development; when they are done, they
must pass tests and test-nb’s; finally they are merged to development.

Testing lightlab

First off, your change should not break existing code. You can run automated tests like this:

make test-unit
make test-nb

The test-nb target runs the notebooks in notebooks/Tests. This is a cool feature because it allows you to go in with
jupyter and see what’s happening if it fails. We recommend using the nbval approach. It checks for no-exceptions, not
accuracy of results. If you want to check for accuracy of results, do something like:

x = 1 + 1
assert x == 2

in the cell.

Make tests for your features! It helps a lot. Again, Never put hardware accessing methods in a unittest.

To run just one test, use a command like:

$ source venv/bin/activate
$ py.test --nbval-lax notebooks/Tests/TestBook.ipynb

Documenting

Documenting as you go is helpful for other developers and code reviewers. So useful that we made a whole tutorial
on it. We use auto-API so that docstrings in code make it into the official documentation.

For non-hardware features, a good strategy is to use tests that are both functional and documentation by example. In
cases where visualization is helpful, use notebook-based, which can be linked from this documentation or in-library
docstrings like this. Otherwise, you can make pytest unittests in the tests directory, which can be linked like this:
test_virtualization.

For new hardware drivers, as a general rule, document its basic behavior in lightlab/notebooks/
BasicHardwareTests. Make sure to save with outputs. Finally, link it in the docstring like this:

class Tektronix_DPO4034_Oscope(VISAInstrumentDriver, TekScopeAbstract):
''' Slow DPO scope. See abstract driver for description

`Manual <http://websrv.mece.ualberta.ca/electrowiki/images/8/8b/MSO4054_
→˓Programmer_Manual.pdf>`__

Usage: :any:`/ipynbs/Hardware/Oscilloscope.ipynb`

'''
instrument_category = Oscilloscope
...

32 Chapter 2. Installation

http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/computationalmodelling/nbval
https://docs.pytest.org/en/latest/

Lightlab Documentation, Release 1.1.0

Linting

As of now, we don’t require strict PEP-8 compliance, but we might in the future. However, we try to follow as many
of their guidelines as possible:

Fig. 1: Example of valid python code that violates some of the PEP8 guidelines.

Sometimes the linter is wrong. You can tell it to ignore lines by adding comment flags like the following example:

x = [x for x in sketchy_iterable] # pylint: disable=not-an-iterable
from badPractice import * # noqa

noqa is going to ignore pyflakes linting, whereas # pylint configures pylint behavior.

If you use Sublime editor

Everyone has their favorite editor. We like Sublime Text. If you use Sublime, here is a good linter. It visually shows
what is going on while you code, saving lots of headaches

Sublime also helps you organize your files, autocomplete, and manage whitespace. This is sublime-lightlab. Put it in
the lightlab/ directory and call it something like sublime-lightlab.sublime-project.

By the way, you can make a command-line Sublime by doing this in Terminal (for MacOS):

ln -s "/Applications/Sublime Text.app/Contents/SharedSupport/bin/subl" /usr/local/bin/
→˓subl

Adding a new package

Two ways to do this. The preferred method is to add it to the package requirements in setup.py. The other way is
in the venv. In that case, make sure you freeze the new package to the requirements file:

2.3. Making your changes to lightlab 33

https://www.python.org/dev/peps/pep-0008/
https://www.sublimetext.com
https://github.com/SublimeLinter/SublimeLinter-flake8

Lightlab Documentation, Release 1.1.0

Fig. 2: Fixing the PEP8 violations of the previous figure.

$ source venv/bin/activate
$ pip install <package>
$ make pip-freeze
$ git commit -m "added package <package> to venv"

Warning: If your code imports an external package, the sphinx documentation will try to load it and fail. The
solution is to mock it. Lets say your source file wants to import:

import scipy.optimize as opt

For this to pass and build the docs, you have to go into the docs/sphinx/conf.py file. Then add that package
to the list of mocks like so:
MOCK_MODULES = [<other stuff>, 'scipy.optimize']

2.3.3 How to document your code

In this section

• 1. Manually

– Bibliographic references

• 2. Via the docstrings

34 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

• 3. Via IPython Notebooks

This documentation is created with Sphinx. It has automatic API build, so write good docstrings! Documentation for
the latest stable lightlab is on readthedocs (link).

Todo: link to the yet-to-exist readthedocs page

If you set up CI for your lab’s fork, you might choose to host the documentation based on your lab’s development
branch. See the Travis for an example of that.

When you are developing, you can build what is in your HEAD directory with make docs. Presumably, you have
SSHFS setup to your instrumentation server. On that mount, navigate to lightlab/docs/_build/html/ and
open index.html. This will use your default browser.

1. Manually

You can write documentation pages manually in the docs/_static/ directory using ReSt

• ReST primer

In this documentation at the upper right corner, there is a “View page source” link that is very useful.

Bibliographic references

Use inline references with the :cite:`auth:99` directive.

At the end of the page, put this command to display the reference:

.. bibliography:: /light-bibliography.bib

The bibtex source is located at docs/light-bibliography.bib

2. Via the docstrings

Documentation of API is autogenerated. That means whatever you put in the code docstrings will end up formatted
nicely on this site. It also means you have to follow some rules about it.

You should do functions like this:

def foo(a, b, *args):
''' My cool function

<< Blank line causes a rendered line break >>
This function does some stuff with ``a`` and ``b``:

* one thing

* another thing
<< Blank line after indented thing, otherwise you get Warnings >>
Pretty neat eh?
<< Blank line before argument list, otherwise you get Warnings >>
Args:

a (int): an input
b (int): another input
*args: more inputs

(continues on next page)

2.3. Making your changes to lightlab 35

http://www.sphinx-doc.org/en/stable/rest.html

Lightlab Documentation, Release 1.1.0

(continued from previous page)

Returns:
(int): an output

'''

This is called Google docstring format. It will render as follows.

foo(a, b, *args)
My cool function

This function does some stuff with a and b:

• one thing

• another thing

Pretty neat eh?

Parameters

• a (int) – an input

• b (int) – another input

• *args – more inputs

Returns an output

Note, if you look at the source of this .rst file, the rendered documentation is in python format using lists of :param:.
You should use python docstring format if manually documenting in the doc source. In the code, use Google format.

Real examples can be found by browsing the API section of this documentation. If you see something you like, click
on the link to view the source. Then you can see how the docstring did that.

3. Via IPython Notebooks

The nbsphinx package by Matthias Geier can convert .ipynb files with outputs into html. The idea here is that it is
sometimes instructive for the reader to play with some knobs to see how something works. Real code examples are
also useful. It also supports running on build, but that is not recommended. These notebooks should be saved with
outputs.

As of now, documentation notebooks are in lightlab/docs/ipynbs/. “Tests/” notebooks should correspond ex-
actly to what is in lightlab/notebooks/Tests, and basic “Hardware/” notebooks should correspond to light-
lab/notebooks/BasicHardwareBehavior. After running and saving, copy that notebook over (do not try to symlink).
Other notebooks can be placed in Others/. You can reference them in the documentation like so

Example Notebook

In [3]: import matplotlib.pyplot as plt
plt.plot([1,2,3], [5, 3, 4])
plt.show()

36 Chapter 2. Installation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
nbsphinx.readthedocs.io

Lightlab Documentation, Release 1.1.0

Generic N-D sweeps

In [1]: %load_ext autoreload
%autoreload 2

import matplotlib.pyplot as plt
import numpy as np
from lightlab.util.sweep import NdSweeper

In [2]: # Turn this on when executing interactively
livePlots = False

In [3]: class Plant():
def __init__(self):

self.x = 2
self.y = 2

def actuateX(self, newX, rounded=False):
self.x = round(newX) if rounded else newX

def actuateY(self, newY):
self.y = newY

def measure(self):
return (np.sin(self.x * self.y/3), self.y / self.x)

Simplest case

In [4]: p = Plant()

swpInX = NdSweeper()
swpInX.addActuation('xActuation', lambda x: p.actuateX(x), np.linspace(15, 25, 20))
swpInX.addMeasurement('measOne', lambda: p.measure()[0])

2.3. Making your changes to lightlab 37

Lightlab Documentation, Release 1.1.0

swpInX.setMonitorOptions(stdoutPrint=False, livePlot=livePlots)

swpInX.gather()
if not livePlots:

swpInX.plot()

Multiple measurements and a domain parser

In [5]: swpInX.addMeasurement('measTwo', lambda: p.measure()[1])
swpInX.addParser('xActuation^4', lambda d: d['xActuation']**4)
swpInX.setPlotOptions(xKey=('xActuation', 'xActuation^4'))
swpInX.gather()
if not livePlots:

swpInX.plot()

Adding new parsers after the data has been gathered

In [6]: swpInX.addParser('ratio', lambda d: d['measOne'] / d['measTwo'])
swpInX.addParser('square', lambda d: d['measOne'] * d['measOne'])

38 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

swpInX.setPlotOptions(xKey='ratio', yKey='square')
swpInX.plot()

Out[6]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1082c6278>]],
dtype=object)

Subsuming to 2D and progress server

In [7]: # Turn to True if you have your monitor server running (see docs)
runServer = False

swpInY = NdSweeper()
swpInY.addActuation('yActuation', p.actuateY, np.linspace(1, 2, 15))

fullSwp = swpInX.subsume(swpInY)

fullSwp.addParser('norm', lambda x: (x['measOne'] + x['xActuation'])**2)
fullSwp.setMonitorOptions(runServer=runServer, livePlot=livePlots, plotEvery=10, stdoutPrint=False)
fullSwp.setPlotOptions(xKey=('yActuation'), yKey=('norm', 'ratio'))
fullSwp.gather()

In [8]: # Default 2D curve plot
fullSwp.setPlotOptions(plType='curves')
_ = fullSwp.plot()

In [9]: # Surface plot
fullSwp.setPlotOptions(plType='surf')

2.3. Making your changes to lightlab 39

Lightlab Documentation, Release 1.1.0

_ = fullSwp.plot()

In [10]: # curves, but with domains reversed. This can reveal other things
fullSwp.setPlotOptions(plType='curves', xKey='xActuation')
_ = fullSwp.plot()

Using static data to compare subsequent sweeps

In [11]: p = Plant()

First do a 1d sweep
swpA = NdSweeper()
swpA.addMeasurement('measOne', lambda: p.measure()[0])

40 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

swpA.addActuation('xActuation', lambda x: p.actuateX(x, rounded=False), np.linspace(15, 25, 100))
swpA.setMonitorOptions(stdoutPrint=False)
swpA.gather()
swpA.plot()
plt.title('Baseline sweep')

Get its data
baseline = swpA.data['measOne']

do a 2d sweep where each line is compared to the 1d line
swpB = NdSweeper()
swpB.addMeasurement('measOne', lambda: p.measure()[0])
The order of these calls matters
swpB.addActuation('xActuation', lambda x: p.actuateX(x, rounded=True), np.linspace(15, 25, 100))
swpB.addStaticData('baseline', baseline)
swpB.addActuation('yActuation', lambda y: p.actuateY(y), np.linspace(1, 3, 3))
swpB.addParser('difference', lambda d: d['measOne'] - d['baseline'])
swpB.setMonitorOptions(stdoutPrint=False)
swpB.setPlotOptions(xKey='xActuation', yKey='difference')
swpB.gather()
swpB.plot()
_ = plt.title('Final comparison sweep')

Saving and loading

In [12]: import lightlab.util.io as io
io.fileDir = '.'
fname = 'temp-ndsweep'
swpB.saveObj(fname)

swpC = NdSweeper.loadObj(fname)

2.3. Making your changes to lightlab 41

Lightlab Documentation, Release 1.1.0

swpC.setPlotOptions(xKey='xActuation', yKey='difference')
swpC.plot()

import os
os.remove(fname + '.pkl')

Saving to file: /Users/atait/Dropbox/Documents/gitProjects/experiment-code/lightlab/notebooks/Tests/temp-ndsweep.pkl

In []:

Simple sweep

In [1]: import matplotlib.pyplot as plt
import numpy as np

import lightlab.util.sweep as sUtil

In [2]: # Define the system used for this notebook
class Plant():

def __init__(self):
self.x = 2

def actuateX(self, newX, rounded=False):
self.x = round(newX) if rounded else newX

def measure(self):
return np.sin(self.x)

In [3]: p = Plant()
x = np.linspace(0,10,100)
y = sUtil.simpleSweep(p.actuateX, x, p.measure)
plt.plot(x,y)

Out[3]: [<matplotlib.lines.Line2D at 0x10b2220b8>]

42 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

In [4]: # Now with a lambda function
y = sUtil.simpleSweep(lambda v: p.actuateX(v, rounded=True), x, p.measure)
plt.plot(x,y)

Out[4]: [<matplotlib.lines.Line2D at 0x10b2b9ac8>]

In []:

2.3. Making your changes to lightlab 43

Lightlab Documentation, Release 1.1.0

Instrument: Clock

In [1]: %load_ext autoreload
%autoreload 2
from start import start

clk = start('Agilent 83712B clock')

It is alive
HEWLETT-PACKARD,83712B,US37101574,REV 10.04
Here is what to test:
startup
enable
frequency

In [2]: origFreq = clk.frequency
clk.frequency = 500e6
print(clk.frequency / 1e6, 'MHz')
clk.frequency = origFreq

origEnable = clk.enable
clk.enable = not origEnable
print(clk.enable)
clk.enable = origEnable

Context management. Downside right now is you need to go through to the config string
with clk.driver.tempConfig('FREQ', 600e6):

print(clk.frequency / 1e6, 'MHz')
assert clk.frequency == origFreq

500.0 MHz
False
600.0 MHz

In []:

Instrument: CurrentSource

In [1]: %load_ext autoreload
%autoreload 2
from start import start

cs = start('Current Source (andromeda)')

It is alive
x = 2
[x+1, x+1.5] = [3.01, 3.51]
Current Source
Here is what to test:
startup
setChannelTuning
getChannelTuning
off

In [2]: cs.setChannelTuning({3: 1.1}, mode='milliamp')
tDict = cs.getChannelTuning(mode='milliamp')
assert tDict[3] == 1.1
print(tDict)
cs.off()

44 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

tDict = cs.getChannelTuning(mode='milliamp')
assert all(t == 0.0 for t in tDict.values())

{0: 0.0, 1: 0.0, 2: 0.0, 3: 1.1, 4: 0.0, 5: 0.0, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.0, 10: 0.0, 11: 0.0, 12: 0.0, 13: 0.0, 14: 0.0, 15: 0.0, 16: 0.0, 17: 0.0, 18: 0.0, 19: 0.0, 20: 0.0, 21: 0.0, 22: 0.0, 23: 0.0, 24: 0.0, 25: 0.0, 26: 0.0, 27: 0.0, 28: 0.0, 29: 0.0, 30: 0.0, 31: 0.0}

In []:

Instrument: FunctionGenerator

In [1]: %load_ext autoreload
%autoreload 2
from start import start

synth = start('Function Generator')

2018-04-17 03:12:10,885 - WARNING - lightlab.visa:
Function generator GPIB is broken, so cannot ensure if live

It is alive
Function generator, HP 8116A
Here is what to test:
startup
frequency
waveform
amplAndOffs
amplitudeRange
duty

Problems here

1. Our particular synth GPIB is broken, so it cannot query

2. The below are currently not working with pretty obscure VISA errors

TODO

In []: # synth.frequency(100)
synth.waveform('sine')
maxVolt = synth.amplitudeRange[1]
synth.amplAndOffs((maxVolt / 10, 0))

In []:

Instrument: Keithley and SourceMeter

In [1]: %load_ext autoreload
%autoreload 2
from start import start

keithley = start('Keithley 25')

It is alive
KEITHLEY INSTRUMENTS INC.,MODEL 2400,4087737,C32 Oct 4 2010 14:20:11/A02 /U/K
Here is what to test:
startup
setCurrent
getCurrent
measVoltage
setProtectionVoltage

2.3. Making your changes to lightlab 45

Lightlab Documentation, Release 1.1.0

protectionVoltage
setProtectionCurrent
protectionCurrent
enable
setPort
setCurrentMode
setVoltageMode
setVoltage
getVoltage
measCurrent

In [2]: keithley.setCurrentMode()
with keithley.warmedUp():

keithley.setCurrent(.1e-4)
print(keithley.measVoltage())

keithley.setVoltageMode()
with keithley.warmedUp():

keithley.setVoltage(1e-3)
print(keithley.measCurrent())

2018-04-17 01:30:26,674 - WARNING - lightlab:
Keithley compliance voltage of 1 reached

2018-04-17 01:30:26,676 - WARNING - lightlab:
You are sourcing 1.001966e-08mW into the load.

1.001966
-2.573609e-11

In []:

Instrument: LaserSource

In [1]: %load_ext autoreload
%autoreload 2
from start import start

dfbs = start('Laser Array 01')
dfbs = start('Laser Array 11')
dfbs = start('Laser Array 12')

It is alive
ILX Lightwave,7900 System,79006021,3.42
Here is what to test:
startup
setChannelEnable
getChannelEnable
setChannelWls
getChannelWls
setChannelPowers
getChannelPowers
getAsSpectrum
off
allOn
enableState
wls
powers
wlRanges
allOff

46 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

In [2]: print('Blocked out channels are', dfbs.driver.useChans)
ena = dfbs.getChannelEnable()
dfbs.off()
dfbs.setChannelEnable({0: 1})
print(dfbs.wlRanges)

Blocked out channels are range(0, 4)
DFB settling for 3 seconds.
done.
DFB settling for 3 seconds.
done.
((1549.27, 1550.97), (1552.48, 1554.18), (1550.07, 1551.77), (1546.87, 1548.57))

In [3]: dfbs.getAsSpectrum().simplePlot('.-')

Out[3]: [<matplotlib.lines.Line2D at 0x7feba2fe00b8>]

In [4]: dfbs.off()

DFB settling for 3 seconds.
done.

In [1]: %load_ext autoreload
%autoreload 2
from start import start

cs = start('Current Source (andromeda)')

It is alive
x = 2
[x+1, x+1.5] = [3.01, 3.51]
Current Source
Here is what to test:
startup
setChannelTuning
getChannelTuning
off

2.3. Making your changes to lightlab 47

Lightlab Documentation, Release 1.1.0

In [2]: cs.setChannelTuning({3: 1.1}, mode='milliamp')
tDict = cs.getChannelTuning(mode='milliamp')
assert tDict[3] == 1.1
print(tDict)
cs.off()
tDict = cs.getChannelTuning(mode='milliamp')
assert all(t == 0.0 for t in tDict.values())

{0: 0.0, 1: 0.0, 2: 0.0, 3: 1.1, 4: 0.0, 5: 0.0, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.0, 10: 0.0, 11: 0.0, 12: 0.0, 13: 0.0, 14: 0.0, 15: 0.0, 16: 0.0, 17: 0.0, 18: 0.0, 19: 0.0, 20: 0.0, 21: 0.0, 22: 0.0, 23: 0.0, 24: 0.0, 25: 0.0, 26: 0.0, 27: 0.0, 28: 0.0, 29: 0.0, 30: 0.0, 31: 0.0}

In []:

Instrument: NetworkAnalyzer

In []: %load_ext autoreload
%autoreload 2
from start import start

pna = start('PNA5222A')

In [3]: # Setup a S21 measurement
pna.measurementSetup(measType='S21')
pna.sweepSetup(startFreq=10e6, stopFreq=1e9, nPts=1000)
pna.sweepEnable(True)
spct = pna.spectrum()
spct.simplePlot()
pna.run() # put it back to live

In []:

48 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

Instrument: OpticalSpectrumAnalyzer

In [1]: %load_ext autoreload
%autoreload 2
from start import start

osa = start('Apex Optical Spectrum Analyzer')

It is alive
Apex AP2440A
Here is what to test:
startup
spectrum
wlRange

In [4]: osa.spectrum(avgCnt=3).simplePlot(livePlot=True, label='Original view')
oldWlRange = osa.wlRange
osa.wlRange = [1544, 1546]
osa.spectrum().simplePlot(livePlot=True, label='Zoom view')
osa.wlRange = oldWlRange

2.3. Making your changes to lightlab 49

Lightlab Documentation, Release 1.1.0

In []:

Instrument: Oscilloscope

In [1]: %load_ext autoreload
%autoreload 2
import matplotlib.pyplot as plt
from start import start

scope = start('Sampling Scope DSA8300')
scope = start('Slow Scope DPO4032')
scope = start('Real Time Scope TDS6154C')

It is alive
TEKTRONIX,DSA8300,C040232,CF:91.1CT FV:6.3.1.3
Here is what to test:
startup
acquire
wfmDb
run
histogramStats

In [2]: chan = 1
scope.acquire([chan], avgCnt=10, duration=None, position=None, nPts=None)[0].simplePlot()
plt.title('acquire')

if 'DSA' in scope.name:
stddev, pdf = scope.histogramStats(chan, nWfms=3, untriggered=False)
print(stddev, 'and', pdf)

if 'DPO' not in scope.name:
plt.figure()
bund = scope.wfmDb(chan, nWfms=5)
bund.simplePlot()

50 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

plt.title('wfmDatabase')
scope.run()

22.11896509818E-6 and [72.4 97.1125 99.9375]

2.3. Making your changes to lightlab 51

Lightlab Documentation, Release 1.1.0

Some error printing tests

In [3]: # The error should suggest going down to the driver
try:

scope.getConfigParam
except AttributeError as err:

print(err.args[0])

Sampling Scope DSA8300 has no attribute getConfigParam
It looks like you are trying to access a low-level attribute
Use ".driver.getConfigParam" to get it

In [4]: try:
scope.histogramStats

except AttributeError as err:
print(err.args[0])

else:
print('This scope implements histogramStats')

This scope implements histogramStats

In []:

Instrument: PowerMeter

In [1]: %load_ext autoreload
%autoreload 2
from start import start

pm = start('Advantest Q8221')
pm = start('Power Meter HP')

It is alive
HEWLETT PACKARD,8152A,0,REV 2.0
Here is what to test:
startup
powerDbm
powerLin

In [2]: print('In dBm ', pm.powerDbm())
print('In lin ', pm.powerLin())

In dBm -17.05
In lin 0.01967886289706845

In []:

Instrument: PulsePatternGenerator

In [1]: %load_ext autoreload
%autoreload 2
import time
from start import start

ppg = start('Anritsu MP1763B Pulse Pattern Generator')

It is alive
ANRITSU,MP1761A,0,0001
Here is what to test:

52 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

startup
setPrbs
setPattern
getPattern
on
syncSource
amplAndOffs

In [2]: ppg.on(True)

origSrc = ppg.syncSource()
print('Sync source is', origSrc)
ppg.syncSource('clock64')
ppg.syncSource(origSrc)

ppg.amplAndOffs()

Sync source is fixed

Out[2]: (0.4, 0.0)

In [3]: # Mess with the pattern here, watch the lights in lab alternate
ppg.setPrbs(16)
print('Pattern was', ppg.getPattern())
for _ in range(4):

print('flipping')
ppg.setPattern(1 - ppg.getPattern())
time.sleep(1)

Pattern was [0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1]
flipping
flipping
flipping
flipping

In []:

Instrument: VariableOpticalAttenuator

In [1]: %load_ext autoreload
%autoreload 2
from start import start

voa = start('HP 8156A Optical Attenuator (corinna)')

It is alive
HEWLETT-PACKARD,HP8156A,3328G01226,1.02
Here is what to test:
startup
on
off
attenDB
attenLin

In [2]: voa.attenDB = 0
voa.attenDB = 3
voa.attenLin = 0

print(voa.attenDB) # this should give you the maximum 60

2.3. Making your changes to lightlab 53

Lightlab Documentation, Release 1.1.0

voa.off()

60.0

Instrument configuration

In [1]: from lightlab.laboratory.state import lab
from lightlab.equipment.lab_instruments import *

host = lab.hosts['gunther']
bench = lab.benches['bert']

Do not edit this
print('Host available addresses:')
for resource in host.list_gpib_resources_info():

print(resource)

Host available addresses:
visa://labdns-gunther.school.edu/GPIB0::16::INSTR
visa://labdns-gunther.school.edu/GPIB0::18::INSTR
visa://labdns-gunther.school.edu/GPIB0::21::INSTR

In [2]: # Uncomment only one at a time
info = Keithley_2400_SM, 'Keithley 21', host.gpib_port_to_address(21), {}
info = ILX_7900B_LS, 'Laser Array 12', host.gpib_port_to_address(12), dict(useChans=range(8))

Do not edit this
theDriver, theName, theAddress, extraKwargs = info
newInst = theDriver(name=theName,

address=theAddress,
bench=bench,
host=host,

**extraKwargs)

try:
oldInst = lab.instruments_dict[newInst.name]

except KeyError:
print('This is a new instrument')

else:
print('You are overwriting! Make sure everything is specified (i.e. ports, useChans, etc.)\n')
oldInst.display()
print('\n*** TO ***\n')
newInst.display()

You are overwriting! Make sure everything is specified (i.e. ports, useChans, etc.)

Keithley 21
Bench: Bench bert
Host: Host brian
address: GPIB0::21::INSTR
driver_class: Keithley_2400_SM
=====
Ports
=====

No ports.

*** TO ***

54 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

Keithley 21
Bench: Bench bert
Host: Host gunther
address: visa://labdns-gunther.school.edu/GPIB0::21::INSTR
driver_class: Keithley_2400_SM
=====
Ports
=====

No ports.

In [3]: # Make the change and save. Be careful!
lab.deleteInstrumentFromName(newInst.name) # deleting previous instance, if it is there
lab.insertInstrument(newInst) # inserting new instance
lab.saveState()

In [4]: # Test it
gotten = lab.instruments_dict[newInst.name]
gotten.isLive()

Out[4]: True

• genindex

• modindex

• search

2.3.4 Making and changing the lab state

One time: Hosts and benches

First you need to add some hosts and benches to the lab. This usually happens only once. Suppose we have a computer
called “brian” that is the localhost actually running the notebooks (note: it can be also viewed as a server). It is
physically located on Bert’s bench:

from lightlab.laboratory.state import lab
from lightlab.laboratory.instruments import LocalHost, Host, Bench

Start by making a host. This is a real computer.
brianHost = LocalHost(name='brian') # name is optional
assert brianHost.isLive() # Sends a ping request
lab.updateHost(brianHost)
lab.saveState()

Next, let’s add a remote host called “gunther”. It connects to some instruments and is running VISA server that will
be contacted by the central server (brian):

guntherHost = Host(name='gunther',into labstate
hostname='labdns-gunther.school.edu',
mac_address='00:00:00:00:00:01', # optional
os='windows') # optional

assert guntherHost.isLive() # will send a ping
lab.updateHost(guntherHost)
lab.saveState()

Next, a bench. Benches are not strictly necessary but useful by convention:

2.3. Making your changes to lightlab 55

Lightlab Documentation, Release 1.1.0

bertBench = Bench(name='bert')
lab.updateBench(bertBench)
lab.saveState()

Note: For isLive to work, the host must be configured to respond to pings.

Instruments

Instruments can be configured many times, for example, if they move. An example of setting one of them is below.
You should copy this ipynb into your operating (myWork) directory as a template to run with jupyter.

Now you get that instrument from any other notebook with the command:

from lightlab.laboratory.state import lab
keithley = lab.instruments_dict['Keithley 21']

• genindex

• modindex

• search

2.4 Tutorials

2.4.1 Measured functions

In this section

• Peak finding

• Descent-based function inversion

• FunctionBundle and FunctionalBasis

MeasuredFunction is the datatype workhorse. Most data can be formulated as one variable vs. another, the
ordinate and abscissa. What we measure is discrete, but we can assume it represents something continuous. That
means interpolation and math are supported with appropriate processing of abscissa basis.

Basic manipulation is supported, such as splicing, deleting segments, adding points, etc. Math is also supported with
a scalar and a measured function and two measured functions (with appropriate abscissa basis handling.)

Child classes include Spectrum, meant for cases where the abscissa is frequency or wavelength and the ordinate is
power or transmission. It has extra methods for conversion from linear to decibel power units. Also Waveform is
meant for cases where abscissa is time.

Peak finding

The data module is particularly good with peaks. A very basic classless peak finder comes with findPeaks().
The arguments are arrays and indeces. It is more useful to do peakfinding in an object-oriented way with
findResonanceFeatures(). The ResonanceFeature class stores information on the position, width, and

56 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

height of peaks, in addition to more powerful aspects like refining position based on convolution with a known peak
shape.

Much of this functionality is handled within the SpectrumMeasurementAssistant, good for when you are
looking at real spectra of a single device over and over again. Makes assumptions such as background not changing
and filter shape not changing. The notebook doesn’t really show the full potential of SpectrumMeasurementAssistant.

Descent-based function inversion

Inverting a measured function is desirable for evoking a particular response that was measured. For example, finding
the proper wavelength shift needed to set a given transmission value, based on a known MeasuredFunction of trans-
mission vs. wavelength. Descent functions use linear interpolation. Descent only works on monotonically increasing
(decreasing) sections. When the entire object is monotonic, use the MeasuredFunction.invert method. When
the function is peak-like, it is possible to specify a direction to start the descent until either the target value is reached,
or the function changes slope.

FunctionBundle and FunctionalBasis

Often there are two abscissas. The “third dimension” could be a continuous variable (as in MeasuredSurface) or
a discrete variable (as in FunctionBundle). They each have different implications and operations and subclasses.
Spectrogram inherits MeasuredSurface with continuous time as the second abscissa. FunctionalBasis is basically a
bundle with increased attention paid to linear algebra and function order for the sake of decomposing, synthesizing,
and projecting weighted additions of other functions.

FunctionBundle(measFunList=None)
A bundle of MeasuredFunction’s: “z” vs. “x”, “i”

The key is that they have the same abscissa base. This class will take care of resampling in a common abscissa
base.

The bundle can be:

• iterated to get the individual :class‘~lightlab.util.data.one_dim.MeasuredFunction‘’s

• operated on with other FunctionBundles

• plotted with :meth‘simplePlot‘ and multiAxisPlot()

Feeds through callable signal processing methods to its members (type MeasuredFunction), If the method is
not found in the FunctionBundle, and it is in it’s member, it will be mapped to every function in the bundle,
returning a new bundle.

Distinct from a MeasuredSurface because the additional axis does not represent a continuous thing. It is
discrete and sometimes unordered.

Distinct from a FunctionalBasis because it does not support most linear algebra-like stuff (e.g. decompo-
sision, matrix multiplication, etc.). This is not a strict rule.

• genindex

• modindex

• search

2.4.2 Using and creating drivers for instruments

2.4. Tutorials 57

Lightlab Documentation, Release 1.1.0

In this section

• The instrument abstraction

• Writing a VISAInstrumentDriver

• Basics

– Troubleshooting 1: Write termination

– Troubleshooting 2: No “*IDN?” behavior

• Configurable

• Difference between __init__, startup, and open

• How to read a programmer manual

Drivers are the original impetus for sharing this project. Writing drivers can be fun (the first few times). It exercises
the full range of electrical engineering knowledge. It can be a snap, or it can take multiple PhD students several days
to realize which cable needed a jiggle. The reward is automated, remote lab control!

The module page lab_instruments contains all the instruments necessary available in lightlab. If your equipment
is available (e.g. a very common Keithley_2400_SM), then you can use it directly with:

from lightlab.equipment.lab_instruments import Keithley_2400_SM
k = Keithley_2400_SM(name="My Keithley", address="GPIB0::23::INSTR")
if k.isLive():

print("Connection is good")

help(k) # should display all commands available to be used.

The address format for the Instrument is either a VISA-compatible resource name (parsed by pyvisa). In this example,
the Keithley instrument is configured to have the address 23, and it is plugged directly to the host. Alternatively, it
can be connected to a computer with an instance of the NI Visa Server, in which case the address would be visa:/
/alice.school.edu/GPIB0::23::INSTR, where alice.school.edu is the hostname of the computer
hosting the Visa Server.

Alternatively, it can be written as prologix://prologix_ip_address/
gpib_primary_address[:gpib_secondary_address], e.g. prologix://alice.school.
edu/23, for use with the Prologix GPIB-Ethernet controller.

The instrument abstraction

In lightlab, there are two layers of abstraction for instrumentation

1. Instrument, such as

• Oscilloscope

• Keithley

2. VISAInstrumentDriver, such as

• Tektronix_DPO4032_Oscope

• Tektronix_DPO4034_Oscope

• Keithley_2400_SM

An Instrument refers to a category of instruments that do certain things. A VISAInstrumentDriver describes
how a particular piece of equipment does it. As a rule of thumb, there is a different driver for each model of instrument.

58 Chapter 2. Installation

http://pyvisa.readthedocs.io/en/stable/names.html#visa-resource-syntax-and-examples
http://prologix.biz/gpib-ethernet-controller.html

Lightlab Documentation, Release 1.1.0

All oscilloscopes have some form of acquiring a waveform, and user code makes use of that abstraction. If you have a
scope other than a TEKTRONIX DPO4032, you are on your own with the driver. BUT, if you can make your low-level
driver for that scope to meet the abstraction of Oscilloscope, then your scope will be equivalent to my scope, in
some sense. That means all of the rest of the package becomes usable with that scope.

The critical part of an Instrument child class are its essentialMethods and essentialProperties. Initial-
ization and book keeping are all done by the super class, and implementation is done by the driver. The driver must
implement all of the essential methods and properties, and then the Instrument will take on these data members as
its own.

As in the case of Tektronix_DPO4032_Oscope and Tektronix_DPO4034_Oscope, there is substantial overlap in im-
plementation. We can save a lot of work by abstracting some of the common behavior, which leads to the third major
concept of abstract drivers, found in the module:

3. abstract_drivers, which includes

• DPO_Oscope

• MultiModalSource

Before writing a fresh driver, check out the abstract ones to see if you can partially use existing functionality (e.g. if
you are making one for a DPO4038).

Fig. 3: Three concepts for lightlab instrumentation. 1) Instruments, 2) VISAInstrumentDrivers, 3) Abstract
drivers.

Writing a VISAInstrumentDriver

For new developers, you will likely have instruments not yet contained in lightlab. We encourage you to write
them, test them, and then create a pull request so that others won’t have to re-invent the wheel.

Basics

A communication session with a message-based resource has the following commands

• open

• close

• write

2.4. Tutorials 59

Lightlab Documentation, Release 1.1.0

• read

• query (a combination of write, then read)

The PyVISA package provides the low level communication. Drivers can be GPIB, USB, serial, or TCP/IP – the main
difference is in the address. PyVISA also has a resource manager for initially finding the instrument. lightlab has
a wrapper for this that works with multiple remote Hosts. See Making and changing the lab state for putting a Host in
the labstate.

Plug your new instrument (let’s say GPIB, address 23) into host “alice”, then, in an ipython session

> from lightlab.laboratory.state import lab
> for resource in lab.hosts['alice'].list_resources_info():
... print(resource)
visa://alice.school.edu/USB0::0x0699::0x0401::B010238::INSTR
visa://alice.school.edu/TCPIP0::128.112.48.124::inst0::INSTR
visa://alice.school.edu/ASRL1::INSTR
visa://alice.school.edu/ASRL3::INSTR
visa://alice.school.edu/ASRL10::INSTR
visa://alice.school.edu/GPIB0::18::INSTR
visa://alice.school.edu/GPIB0::23::INSTR

That means the instrument is visible, and we know the full address:

> from lightlab.equipment.lab_instruments.visa_connection import VISAObject
> newInst = VISAObject('visa://alice.school.edu/GPIB0::23::INSTR')
> print(newInst.instrID())
KEITHLEY INSTRUMENTS INC.,MODEL 2400, ...

That means the instrument is responsive, and basic communication settings are correct already. Time to start writing.

Troubleshooting 1: Write termination

Try this:

> newInst.open()
> newInst.mbSession.write_termination = ''
> newInst.mbSession.clear()
> print(newInst.instrID())

and play around with different line terminations. There are also different options for handshaking to be aware of, as
well as baud rate attributes. For debugging at this level, we recommend the NI visaic.

When you find something that works, overload the open method. Do not try to set these things in the __init__
method.

Troubleshooting 2: No “*IDN?” behavior

Some instruments don’t even though it is a nearly universal requirement. In that case, find some simple command in
the manual to serve as your “is this instrument alive?” command. Later, overload the instrID method.

Configurable

Many instruments have complex settings and configurations. These are usually accessed in a message-based way with
write(':A:PARAM 10') and query(':A:PARAM?'). We want to create a consistency between driver and
hardware, but

60 Chapter 2. Installation

http://pyvisa.readthedocs.io/en/stable/

Lightlab Documentation, Release 1.1.0

Fig. 4: NI Visa Interactive Control window. Change around line settings, then write “*IDN?” in the Input/Output. See
attributes for more advanced settings.

1. we don’t care about the entire configuration all the time, and

2. it doesn’t make sense to send configuration commands all the time.

Configurable builds up a minimal notion of consistent state and updates hardware only when it
might have become inconsistent. The above is done with setConfigParam('A:PARAM', 10) and
getConfigParam('A:PARAM'). If you set the parameter and then get it, the driver will not communicate with
the instrument – it will look up the value you just set. Similarly, it will avoid setting the same value twice. For
example,:

Very slow
def acquire(self, chan):

self.write(':CH ' + str(chan))
return self.query(':GIVE:DATA?')

Error-prone
def changeChannel(self, chan):

self.write(':CH ' + str(chan))

def acquire(self):
return self.query(':GIVE:DATA?')

Good (using Configurable)
def acquire(self, chan):

self.setConfigParam('CH', chan)
return self.query(':GIVE:DATA?')

Both support a forceHardware kwarg and have various options for message formatting.

Configurable also has support for saving, loading, and replaying configurations, so you can put the instrument in
the exact same state as it was for a given experiment. Save files are human-readable in JSON.

Difference between __init__, startup, and open

__init__ should set object attributes based on the arguments. The super().__init__ will take care of lab
book keeping. It should not call open.

open initiates a message based session. It gets called automatically when write or query are called.

startup (optional) is called immediately after the first time the instrument is opened.

2.4. Tutorials 61

Lightlab Documentation, Release 1.1.0

How to read a programmer manual

You need the manual to find the right commands. You are looking for a command reference, or sometimes coding
examples. They are often very long and describe everything from scratch. They sometimes refer to programming with
vendor-supplied GUI software – don’t want that. Here is a very old school manual for a power meter. It is 113 pages,
and you need to find three commands. Go to the contents and look for something like “command summary.”

which turns into the following driver (complete, simplified). If possible, link the manual in the docstring.

class HP8152(VISAInstrumentDriver):
''' The HP 8152 power meter

`Manual <http://www.lightwavestore.com/product_datasheet/OTI-OPM-L-030C_pdf4.
→˓pdf>`_

'''
def startup(self):

self.write('T1')

def powerDbm(self, channel=1):
'''

Args:
channel (int): 1 (A), 2 (B), or 3 (A/B)

'''
self.write('CH' + str(channel))
returnString = self.query('TRG')
return float(returnString)

Newer equipment usually has thousand-page manuals, but they’re hyperlinked.

• genindex

• modindex

• search

2.4.3 Doing sweeps

In this section

• Basic concepts

• Other actuate-measure situations

Note: this section is probably more appropriately named actuate/measure setups. This includes sweeps but it also
includes command-control (more than just sweeps), as well as peak search and binary search.

Todo: relabel accordingly

Sweeps are incredibly common in experiments because they are about repeated measurements of one thing as it
changes in relation to other things.

Sweeps are like loops, but with some special properties. That’s why the package provides a generalized sweeper class
for taking care of a lot of the common issues.

62 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

Fig. 5: Manual of the HP 8152A Power Meter (1982).

2.4. Tutorials 63

Lightlab Documentation, Release 1.1.0

Input	
Actuation	variable

Output	
Measurement	variable

Device

Actuator Detector

1d	regular

Basic concepts

A typical sweep might look like this:

actVals = np.linspace(0, 1, 10)
measVals = np.zeros(len(actVals))
for i, vA in enumerate(actVals):

actuate(vA)
measVals[i] = measure()

plt.plot(actVals, measVals)

There are a few things going on here. Every time a measurement is taken, it is paired with an actuation. In other
words, something in the lab changes that you control, and then you look at what happened.

1. An actuation procedure: actuate

2. A measurement function: measure

3. A series of actuation arguments: actVals

4. Corresponding measurement results: measVals (pre-allocated)

5. Post processing, in this case, plotting

The role of the for loop is to get one argument and pass it to the actuation procedure, then take one measurement and
store it in the pre-allocated array.

A major problem here is that the important information is distributed all throughout the for loop structure. We would
like to specify those things upfront. The simpleSweep() function does this in a bare bones version.

Challenges of more advanced sweeps

• The code gets difficult to read

• Often they are repeated with only small changes somewhere in the loop

• They can take a long time

• Processing and analysis occur only after they complete

The information can be distributed all throughout the code. This is especially the case when there are multiple dimen-
sions, intermediate monitoring (e.g. plotting) and analysis (e.g. peak picking), and various data formats. What if we
want to make a small change? The location in code is not obvious.

64 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

Since they take a long time, we want to get intermediate information out to the user via progress printing and reporting,
maybe even visualization. Progress reporting can tell you when the sweep is likely to finish, so you can decide whether
there’s enough time to get a coffee or to get some sleep.

Intermediate analysis can also show you how it’s going to decide whether to continue or stop. The relevant information
could require lots of processing, such as if you want to know how a peak is moving. We want to put arbitrarily advanced
analysis within the loop, and connect it to intermediate plotting.

The worst is when you finish a sweep and the bulk processing at the end throws an exception. You have to repeat the
sweep. Or if you are returning to an old notebook to fix up a figure for a paper. You have to repeat the sweep. We want
convenient ways to save the data an reload it as if the sweep had just occured fresh.

Sweeper is a way to re-organize the for-actuate-measure setup. All of the important information can be specified at
the beginning. All of the bells and whistles like monitoring and plotting happen under the hood. It has two important
subclasses, NdSweeper and CommandControlSweeper.

N-dimensional sweeps with NdSweeper

Concept

Device

A0 DetectorA1

2d	regular

Device

Actuator D0 D1

Input	
Actuation

Output	
Measurement

Input	
Actuation

Output	
Measurement

2-dimensional	actuation 2-dimensional	measurement

Sweeps can occur in several dimensions of actuation and/or measurement. Suppose we want to see how some measured
(dependent) variables depends on two actuated (independent) variables

1 aAct = np.linspace(0, 1, 10)
2 bAct = np.linspace(10, 20, 3)
3 measMat = np.zeros((len(aAct), len(bAct)))
4 for ia, a in enumerate(aAct):
5 act_1(a)
6 for ib, b in enumerate(bAct):
7 act_2(b)
8 measMat[ia, ib] = measure()
9 plt.pcolormesh(aAct, bAct, measMat)

The for loops get nested with each sub-row calling its own actuate. Measurement always happens in the inner-loop.
Alternatively, all actuation can happen on the inner loop by flipping lines 4 and 5. The order and precedence of
actuation calls is critical.

In the package, all of this functionality and more is implemented in the NdSweeper. One specifies the domain
(aAct, bAct) and the functions to call in each dimension (act_1 and act_2). One also specifies the measurements

2.4. Tutorials 65

Lightlab Documentation, Release 1.1.0

that should be taken (meas_1, meas_2). The sweep is executed with the gather() method.

Usage

NdSweeper also supports a subsume() method which combines a N-dimensional sweep with a M-dimensional
sweep into a (N+M)-dimensional sweep.

Basic data structure concept

NdSweeper has attributes containing function pointers. These tell it what to do when actuating, measuring, or parsing.
The actuation values are specified at the time of the actuation function. All of these things must have name/key that
is unique within the sweep. All of their value data is stored in a common data structure that has N array-like sweep
dimension(s) and one dictionary-like dimension for different data memebers. When a sweep completes, the entire grid
of values for a given data member can be accessed with swp.data[key], returning an ndarray. On the other hand,
all of the data for a given sweep point can be accessed with swp.data[ndindex], returning a dict. (Don’t worry
about the implementation of that structure)

Specifying actuation

Actuation values are determined when specified. Their dimensions determine the sweep and data dimension. The
order that they are added affects the sweep priority, such that the first sweep addded will be swept at each point of the
second added, etc. An actuation function has one argument which is provided by the actuation value at that index. If
there is a return, that is treated as a separate measurement. Doing on every point is specifiable.

NdSweeper.addActuation(name, function, domain, doOnEveryPoint=False)
Specify an actuation dimension: what is called, the domain values to use as arguments.

Parameters

• name (str) – key for accessing this actuator’s value data

• function (func) – actuation function, usually linked to hardware. One argument.

• domain (ndarray, None) – 1D array of arguments that will be passed to the function.
If None, the function is called with a None argument every point (if doOnEveryPoint is
True).

• doOnEveryPoint (bool) – call this function in the inner loop (True) or once before the
corresponding rows(False)

Specifying measurement

Measurement values are filled in point-by-point for every sweep index. They depend only on external function results,
not on stored data. Measurement functions are called with no arguments. Returning is mandatory. The order does not
matter theoretically, but it is preserved (first added, first called).

Special case: if the actuation method has a return type that is not NoneType, a measurement will automatically be
created to capture these values. This measurement key will be the actuation key, plus '-return'.

NdSweeper.addMeasurement(name, function)
Specify a measurement to be taken at every sweep point.

Parameters

• name (str) – key for accessing this measurement’s value data

66 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Lightlab Documentation, Release 1.1.0

• function (func) – measurement function, usually linked to hardware. No arguments.

Parsers: what and how

Parsers are functions of the sweep data (which may include the results of other parsers). They have one argument, a
dictionary of data members at a given sweep point. The order they are added is important if the execution of one parser
depends on the result of another. Parsers added after the sweep is gathered will be fully calculated automatically.
During the sweep, parsers are calculated at every point. They typically do not interact with hardware nor do they
depend on sweep index; however, they are allowed to interact with persistent external objects, such as a plotting axis.

NdSweeper.addParser(name, function)
Adds additional parsing formulas to data, and reparses, if data has been taken

Parameters

• name (str) – key for accessing this parser’s value data

• function (func) – parsing function, not linked to hardware. One dictionary argument.

Static data

Parsing functions can depend on values that are not measured during the sweep. Give it a name key and it can be
accessed by parsers just like a measurement. When adding static data, it will expand to fit the shape of the sweep, to
some extent (see the docstring). That means you can add static data that is constant using a scalar and variable using
an ndarray.

NdSweeper.addStaticData(name, contents)
Add a ndarray or scalar that can be referenced by parsers

The array’s shape must match that of the currently loaded actuation grid.

If you then addActuation(), the static data automatically expands in dimension to accomodate. Values are
filled by tiling in the new dimension.

Add static data after the actuations that have different static data, but before the actuations for which you want
that data to be constant.

Parameters

• name (str) – key for accessing this data

• contents (scalar, ndarray) – data contents

Tricks with array actuation

Some actuation procedure can not be separated into different functions, each with one argument. Some need multiple
arguments, and you may be interested in sweeping both. The memory allocation is the same:

aAct = np.linspace(0, 1, 10)
bAct = np.linspace(10, 20, 3)
measMat = np.zeros((len(aAct), len(bAct)))

But the for loop is fundamentally different

2.4. Tutorials 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Lightlab Documentation, Release 1.1.0

for ia, a in enumerate(aAct):
for ib, b in enumerate(bAct):

act(a, b)
measMat[ia, ib] = measure()

What this means is that we need to restructure how the sweep is specified, and the functions the user gives it.

Todo: Array actuation is not currently supported by NdSweeper, but should be. Fundamentally, CommandControl-
Sweeper is of the array actuation type, and that is implemented. Perhaps this calls for a new subclass of Sweeper

• genindex

• modindex

• search

Command-control sweeps

Note for documenter The basics of this section should go on a different page about command-control without sweep-
ing. Then on this page, it can focus just on the challenge of sweeping them

Concept

These are special in that the actuation function attempts to invert the behavior of the physical system, such that the
input is nominally seen as the measured output.

Input	
Command	variable

Output	
Measured	variable

Controller	
function

Device

Actuator Detector

Comparison

Since they are trying to reproduce a response equal to the input, the number of actuation and measurement dimensions
are equal. So in 1D:

68 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

ctrlVals = np.linspace(0, 1, 10)
measVals = np.zeros(len(ctrlVals))
for i, cVal in enumerate(ctrlVals):

actVal = control(cVal)
actuate(actVal)
measVals[i] = measure()

Note that the actuate function is still there, but its argument comes from the control function. Ideally,
ctrlVals will equal measVals. Their difference gives us an idea of control error.

Input	
Command	variable

Output	
Measured	variable

Controller	
function

Device

A0

Comparison

2d	command-control

D0 D1A1 AN

In 2D, the control function is rarely seperable, which means these sweeps fall into the array actuation type.

aCtrl = np.linspace(0, 1, 10)
bCtrl = np.linspace(10, 20, 3)
ctrlMat = np.zeros((len(aAct), len(bAct), 2))
measMat = np.zeros((len(aAct), len(bAct), 2))
for ia, a in enumerate(aAct):

for ib, b in enumerate(bAct):
ctrlMat[ia, ib, :] = [a, b]
actArr = control([a, b])
actuate(actArr)
measMat[ia, ib, :] = measure()

Notice that measMat is now 3 dimensional, with the third dimension corresponding do which variable. Highlighted
lines show how to construct the expected ctrlMat. It makes more sense to fill that control matrix before doing the
actual sweep. This can instead be done with meshgrid commands:

aGrid, bGrid = np.meshgrid(aCtrl, bCtrl)
ctrlMat = np.array((aGrid, bGrid)).T # ctrlMat.shape == (10, 3, 2)

2.4. Tutorials 69

Lightlab Documentation, Release 1.1.0

There is an advantage to doing this at first in that the sweep loop is simplified and more flexible.

for swpIndex in np.ndindex(ctrlMat.shape[:-1]):
actArr = control(ctrlMat[swpIndex])
actuate(actArr)
measMat[swpIndex] = measure()

Voila! This structure is the same as the 1-dimensional command-control sweep: one line each for control, actuate, and
measure. It takes advantage of NumPy’s n-dimensional for loop iterator.

Usage

• genindex

• modindex

• search

The Sweeper class: features and options

Progress monitoring

Use setMonitorOptions() to set and get. To see how the sweep is coming along, you can choose to print to
stdout or to serve a page available anywhere online. If plotting is also set up, you can live plot every point in your
notebook as it is being taken. Here are the options

stdoutPrint Print the sweep index to stdout to see progress

cmdCtrlPrint (only with CommandControlSweeper) Print the sweep index, command value, and mea-
sured value to see the errors

livePlot Refresh plots every data point when in an IPython notebook. Options specified in
setPlotOptions will be used.

plotEvery Number of points to wait before refreshing live plot

runServer Print the sweep index to a file that is served online

Note: If your actuate-measure routine is fast, then live plotting can slow down the sweep with the need to refresh
graphics. Set plotEvery to an integer more than 1 to do less plotting.

Warning: Live plotting is not yet supported for surf plots, and there are a few bugs with 1D command-control
plots.

If runServer==True, to serve the page, you must first start the server (see here), making sure to set up the right
domain, domainHostName, monitorServerDir, and monitorServerPort. If you are using Sweeper, it configures your
sweep to write to the server.

Note: To instead do it manually, you would make a ProgressWriter:

prog = io.ProgressWriter(swpName, swpShape, runServer=True)

70 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

and then call prog.update() every inner-loop iteration.

Plotting

Todo: Another bug when using xKey equal to the major sweep axis. It sometimes only displays movement along
x=constant lines.

Use setPlotOptions() to set and get. Different plots are available for different kinds of sweeps. Some of the
options are only valid with a given type. For most purposes, the best options are detected automatically, so you don’t
have to set them. Here are the options.

NdSweeper

plType (str)

• 'curves' (1D or 2D) Standard line plots. If 2D, a set of lines with a legend will be produced.

• 'surf' (2D only) Standard surface color plot

xKey (str, tuple) Abscissa variable(s)

yKey (str, tuple) Ordinate variable(s)

cmap-surf colormap

cmap-curves colormap

A grid of axes will be produced that depends on the length of the tuples xKey and yKey. If both xKey and yKey are
strings, only one plot axis is made. By default, the x (y) keys are filled with the actuation (measurement) variables that
are detected to be scalar.

CommandControlSweeper

plType (str)

• 'curves' (1D only) A line plot [TFerreiradLimaN+16a] showing mean and variances of
measured vs. command

• 'cmdErr' (1D or 2D) A special grid plot [TFerreiradLimaN+16b] showing mean quivers
and variance ellipses

Saving and loading

Sweeper provides two sets of save/load. The file is determined by the io.fileDir variable and the object’s
savefile attribute. These can be combined with a gathering boolean to determine whether you want to retake the
sweep or load it from a saved version.

save and load do just the data attribute.

swp = NdSweeper(...)
...
swp.savefile = 'dummy'
if isGathering:

swp.gather()
swp.save()

else:
swp.load()

2.4. Tutorials 71

Lightlab Documentation, Release 1.1.0

Saving the entire object is good if the domains change, which is particularly important for command-control types.
The problem is that references to bound functions cannot be pickled. The saveObj and cls.loadObj methods try
to do the entire object, while leaving out the actuation and measurement function references.

myfile = 'dummy'
if isGathering:

swp = CommandControlSweeper(...)
...
swp.gather()
swp.saveObj(myfile)

else:
swp = sUtil.CommandControlSweeper.loadObj(myfile)

Todo: NdSweeper has no loadObj yet. This seems reasonable to do by stripping the bound references. Consider
deprecating saving/loading just data and the savefile attribute.

• genindex

• modindex

• search

Other actuate-measure situations

Peak search and binary search can be done interactively with a peaked or monotonic (respectively) system. Those
examples are found in here

Todo: Currently peak search is like a n-point 1-D Nelder Meade search. That could be extended to multiple dimen-
sional optimization.

• genindex

• modindex

• search

2.4.4 Characterization in time

Presumably, you want to get some advanced knowledge about how your devices behave in time. That could be either
on short timescales, much faster than measurements can complete, or on long timescales, much slower than you’re
willing to sit there.

Monitoring a value over time is pretty self explanatory. See monitorVariable().

Strobe tests are much more interesting. Check out sweptStrobe() in here

• genindex

• modindex

• search

72 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

2.4.5 Virtualization

In this section

• Procedural abstraction

– Why separate VirtualInstrument and the simulation model?

• Dual Instruments

Virtual experiments are meant to behave exactly like a real lab would, except by using code calls to simulators rather
than real instruments. This is useful for several reasons

1. Developing/debugging procedures quickly and safely

2. Validating that procedures will work and not go out of range before running on a real device

3. Unit testing code that refers to instruments in a repeatable virtual environment

This section refers to the example in

Procedures, virtualization, abstract procedures

Demonstration of using an actuate/measure procedure to get data and analyze something about the data.

The procedure itself needs to be developed and debugged. This notebook shows how to do that virtually. When ready
it goes to experiment by flipping a switch.

Experimental setup:

In [1]: import numpy as np
import matplotlib.pyplot as plt
from IPython import display

from lightlab.laboratory.virtualization import VirtualInstrument, DualInstrument
import lightlab.laboratory.virtualization as virtUtil

Semi-libraries

These are python files in the same directory as this notebook that have some functions and classes. Import them to the
notebook. You should be writing/developing them simultaneously with the notebook. This practice is recommended
because .py files work well with git diff but .ipynb files do not. As a rule of thumb, don’t put instrument access
within the semi-libraries. You can use them for commonly used and/or long procedures, functions, sweep declarations,
etc.

In [2]: from myProcedures import extractThreshold

This is a model of a diode

It has * parameters, like threshold voltage * methods for simulating: this applied voltage will give that observed current
- apply (a.k.a. actuate) –> observe (a.k.a. measure)

2.4. Tutorials 73

Lightlab Documentation, Release 1.1.0

74 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

It does not have state. - The observations are completely determined by the actuation now - This is not a requirement -
The only reason for a simulation model to have state is if the device you are trying to model have hysteresis (or if you
are caching)

In [3]: # To debug this procedure, you will simulate a diode similar to the real one
class Diode():

def __init__(self, threshV, Rinline=10):
self.threshV = threshV
self.Rinline = Rinline

def ivResponse(self, atVoltage):
return max(0, atVoltage - self.threshV) / self.Rinline

myDiode = Diode(threshV=.5)

Stone age evaluation
fi, ax = plt.subplots(figsize=(6,4)) # line 0
plt.xlabel('voltage')
plt.ylabel('current')
vArr = np.linspace(0, 1, 20)
iArr = np.zeros(len(vArr))
for jV, V in enumerate(vArr):

iArr[jV] = myDiode.ivResponse(V)
plt.plot(vArr[:jV], iArr[:jV], '.-')
display.clear_output(wait=True)
display.display(plt.gcf()) # 10 line for loop

2.4. Tutorials 75

Lightlab Documentation, Release 1.1.0

The parameter extraction procedure

A procedure consists of a sequence of actuation and measurement operations that interface with laboratory instruments.
The actuation might be determined beforehand (i.e. sweep) or it could be changed depending on what is measured
(i.e. search).

The procedure is often the most complicated part of your experimental code. The procedure is what you are devel-
oping and debugging here

Example, a parameter extraction type of procedure

In this example, we want to find the diode threshold voltage * Acquire: do a sweep in voltage, measuring current *
Analyze: look for the maximum second-derivative

Notes

• NdSweeper class (overkill for now) and the concept of passing methods as arguments

• These methods are NOT called yet because

– we don’t yet know if this procedure is real or virtual (it could be both)

In [4]: extractThreshold?

The virtual instrument

This class basically holds the state that is normally found in real life. It interacts with the simulation model.

76 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

Why do you use the Virtual instrument instead of just using the simulator?

Because this is the API for the real life instruments. You should not have to make * prodecure 1: experimental using
instruments, and * procedure 2: virtual using a simulation model, calling things like ivResponse()

VirtualKeithley provides the same API as Keithley (the real instrument class)

In [5]: class VirtualKeithley(VirtualInstrument):
def __init__(self, viResistiveRef):

self.viResistiveRef = viResistiveRef
self.__appliedVoltage = 0 # state

def setVoltage(self, volts):
self.__appliedVoltage = volts

def measCurrent(self):
return self.viResistiveRef.ivResponse(self.__appliedVoltage)

Running it

Make a diode model, connect it to the virtual keithley, execute the procedure. Then, get the extracted parameter from
the procedure. Compare it to the hidden one. We are now evaluating a procedure.

In [6]: hiddenThresh = 1.5
myDiode = Diode(hiddenThresh)
keithley = VirtualKeithley(viResistiveRef=myDiode)

foundThresh = extractThreshold(keithley, vMax=3)
err = foundThresh - hiddenThresh
print('Error =', abs(err) / hiddenThresh * 100, 'percent')

Error = 5.263157894736844 percent

2.4. Tutorials 77

Lightlab Documentation, Release 1.1.0

Warning the following cells access real instruments

(This warning should be apparent in all your notebooks)

You can prevent any hardware access using the virtualization.virtualOnly variable.

In [7]: virtUtil.virtualOnly = True

The hardware instrument

Is pulled from the instruments_dict. In this case, “Keithley 23.” You need to build this dict elsewhere using the tools
from lightlab.laboratory.state. We don’t just want a VirtualInstrument, we want something that
can switch between virtual and real on the fly. That is a DualInstrument.

In [8]: if not virtUtil.virtualOnly:
from lightlab.laboratory.state import lab
dualKeithley = DualInstrument(real_obj=lab.instruments_dict['Keithley 23'],

virt_obj=VirtualKeithley(myDiode))
with dualKeithley.asReal():

dualKeithley.setVoltage(0.)
dualKeithley.setProtectionCurrent(50e-3)

else:
dualKeithley = DualInstrument(virt_obj=VirtualKeithley(myDiode))

In [10]: with dualKeithley.asVirtual():
foundModel = extractThreshold(dualKeithley)
print('The model threshold is', foundModel)

with dualKeithley.asReal():
foundDevice = extractThreshold(dualKeithley)
print('The device threshold is', foundDevice)

78 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

The model threshold is 1.4210526315789473

In []:

Procedural abstraction

A procedure is automated code that uses instruments. It could just be a simple sweep, or it could be a complex
interactive search. The goal of a procedure could be extracting parameters from a device (see the demo in light-
lab/notebooks/Examples), controlling something (such as a peak tracker), or calibrating something.

In a real setting, the procedure is given reference to a hardware Instrument. The instrument contains a driver that
talks to the actual piece of equipment. This equipment is hooked up to a real-life device.

In a virtual setting, we can use a VirtualInstrument to provide a partial API that matches the real Instrument.
In the example, the provided methods are setVoltage and measCurrent. The virtual setting needs a model to
determine what will be measured given a particular actuation.

2.4. Tutorials 79

Lightlab Documentation, Release 1.1.0

myProcedure

myKeithley
Keithley
Instrument
Node

.driver
Keithley_2400_SM

VISAInstrumentDriver
Configurable

reality

myVirtualKeithley
VirtualKeithley
VirtualInstrument

myDiode
Diode

Simulator

state

state

state

myProcedure

Fig. 6: Comparison of a real experiment and a virtual experiment. A key difference is where state is held.

80 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

Why separate VirtualInstrument and the simulation model?

Instead, we could make a class called VirtualKeithleyWithDiodeAttached that provides the same methods.
It’s getVoltage method would do the diode computation. There are a few reasons why we argue not to do that.

1. Keeping state in one place In the real experiment, the entire “state” of the lab can be described by what is in
the drivers (which should match the configuration of the actual equipment). Similarly, for virtual, you
should not have to go digging around the simulator to figure out the entire “state”.

2. Avoid creating a special purpose instrument for every experiment You can re-use VirtualKeithley with a
different model in its viResistiveRef.

3. Enforces the proper namespace Your procedure should not be able to directly see your model. It should only
be interacting with Instrument-like things

4. Functional simulators This means, if the input is the same, the output is always the same. Also, the simulators
cause no side-effects. Easy to test and debug. Easy to compose into larger simulators.

Note: This is not a hard and fast rule. Reasons to store state in the simulator is if there is hysteresis, or, for performance
reasons, it might make sense to cache results within the simulator.

Clearly, VirtualKeithleyWithDiodeAttached is a bad instrument because it is not re-usable. It is a bad
simulator because it cannot be composed with other simulators, and it is difficult to unit test because the return of
getVoltage depends on history. These points come into play when simulation models get more complicated.

Dual Instruments

DualInstrument wraps two instruments: one real and one virtual. The procedure can be given a reference to the
dual instrument, just as it was before. The dual construct makes sure that there is an exact correspondence between
the two cases.

Dual instrument is Virtualizable which means it has an attribute virtual that controls the switch. More
useful: it provides context managers called asReal and asVirtual. The benefit of context managers is they allow
entry and exit operations, in this case, usually hardware warmup and cooldown methods. They can also be used to
synchonize multiple Virtualizable things in more complex cases. See synchronize().

• genindex

• modindex

• search

• genindex

• modindex

• search

2.5 Miscellaneous Documentation

2.5.1 Git with ipython notebooks

Interactive tutorials are in notebooks. A full “experiment” in the lab is contained in a notebook. Notebooks are
supposed to change a lot and meant to be played with. They are graphical. They are also essential to track.

2.5. Miscellaneous Documentation 81

Lightlab Documentation, Release 1.1.0

myProcedure

myKeithley
Keithley
Instrument
Node

.driver
Keithley_2400_SM

VISAInstrumentDriver
Configurable

reality

myVirtualKeithley
VirtualKeithley
VirtualInstrument

myDiode
Diode

Simulator

myDualKeithley
DualKeithley
DualInstrument
Virtualizable

Fig. 7: A dual experiment for testing myProcedure. It can run either as virtual or as real by flipping a switch in
myDualKeithly, without rewriting any code in myProcedure

82 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

Problem 1

• Diff-ing your work against someone else’s is impossible

• Changes to binary outputs take up a huge amount of space, even if nothing significant actually changed

Jupyter notebooks have two sections: inputs (code, markdown) and outputs (stdout, plots, images). Interactive python
notebook files embed compiled outputs. This is good if you want to restart a kernel but still see the output, or if you
close the file, etc.

Solution 1 and Problem 2: The nbstripout filter

nbstripout is a Git filter and “hides” the output and some metadata in .ipynb files from Git such that it does not
get committed. This allows only tracking the actual input code cells in Git. It is installed via the requirements.
txt, but there is also some interesting discussion and documentation

There are three downsides:

1. What if you liked keeping those outputs without rerunning every commit?

2. It has to strip evvverything, including all those high-quality graphics, every single time you git status.

3. It crashes your essential commands. Very easy to get into a chicken-and-egg hole where you can’t diff
anything because __some__thing isn’t JSON – causing a crash – but you can’t figure out what isn’t JSON
because you can’t see which files just changed.

4. It can corrupt files. That’s why we made cleannbline.

Solution 2. Deactivate the nbstripout filter

source venv/bin/activate
nbstripout --uninstall

Never think about it again. . . until you have to merge.

Best practice

Ultimately, some of the work in notebooks will be lost. This is desireable in the case where two people made slightly
different versions of the same figure. However, it is impossible to tell if something important changed in a source cell.

Use semi-libraries for long and complex code segments. These are regular python files in the same directory as the
notebook. They can be diffed easily.

> notebooks/myFolder
| gatherData.ipynb
| libStuff.py
-

In “libStuff.py”:

def squareIt(x):
return x ** 2

In “gatherData.ipynb”:

2.5. Miscellaneous Documentation 83

https://stackoverflow.com/questions/18734739/using-ipython-notebooks-under-version-control/20844506
https://github.com/kynan/nbstripout

Lightlab Documentation, Release 1.1.0

from libStuff import squareIt
y = squareIt(3)

The merge scenario

You have branches development and cool-feature, and you want to merge cool-feature into
development. Both have lots of notebooks with outputs, possibly with corrupted first lines.

Preliminaries

nbstripout is in your venv, so activate the venv. Later, when we install the filter, it expects a clean attributes file.

source venv/bin/activate
rm .git/info/attributes <<don't have to do this every time>>

You should have a good file editor (Sublime) ready for lots of conflicts happening within unreadable (in multiple
senses) .ipynb files. You will need some kind of “Find All Within Project.” Have it going on your local machine
with an SSHFS.

Be aware of the cleannbline script. Sometimes non-JSON and non-unicode characters get into the first line,
making them unreadable for everything. This script cleans them.

Process

Create a test branch for merge

git checkout -b test_merge_cool-feature-into-development

Activate your filter

nbstripout --install
cat .git/info/attributes

should produce an output that looks like this

*.ipynb filter=nbstripout

*.ipynb diff=ipynb

Strip the notebooks on test branch

Run

git status

It takes some time. What is that error? It means that some of the notebooks are not valid JSON and cannot be parsed
by the nbstripout filter.

In the crash log, it should point to a certain file, let’s say notebooks/Test.ipynb First, clean it with

84 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

./cleannbline notebooks/Test.ipynb

Then, open that file in Sublime and search for <<<<. Sometimes conflicts in your stash can get hidden in a way that
does not show up in Jupyter. nbstripout will crash. You can find it in Sublime.

Return to running git status until it completes without error. It should show a ton of modifications: those are the
effects of stripping. Add those and commit

git add .
git commit -m "stripped notebooks for merge"

Strip the notebooks on cool-feature branch

Your filter is currently active, so when you try

git checkout cool-feature

it will automatically crash. As above though, it will point to a file. Keep going until git status completes. Add
those and commit.

Side note: even though git status shows a ton of modifications, you should get a clean git diff (Although
sometimes it will just crash, NBD). Both commands are applying the .ipynb filter. . . in some way.

Do the merge

git checkout test_merge_cool-feature-into-development
git merge cool-feature

You will get conflicts in two categories: notebooks and other. Since there are <<<< conflict markers everywhere, your
git diff will crash while you’re in the merge. It also doesn’t point you to an offending file. Here is where you’ll
really appreciate Sublime.

Make sure Sublime opens the entire notebooks directory. That way Find All will search all the files.

1. Pick one file, let’s say notebooks/Test2.ipynb

2. You might have to ./cleannbline notebooks/Test2.ipynb

3. In sublime, fix all instances of <<<<, which are usually

• Minor version changes or metadata stuff

• Legitimate conflicts

4. When you are satisfied, go back and git add notebooks/Test2.ipynb

Repeat for all the notebooks. Then do the same for all the regular code files. When you run git status and
everything is green, you are done. End the merge with

git commit

If for some reason, you want to abandon the merge while keeping the test_merge branch stripped, you can run git
reset --hard

2.5. Miscellaneous Documentation 85

Lightlab Documentation, Release 1.1.0

Finalize

Double check that everything went well (i.e. open some notebooks in Jupyter). If something screwed up in your
merging or stripping, you can just delete the test_merge branch and start over.

Now we’re going to make changes to the real development branch.

git checkout development

This will take a while. If it causes crashes, do the thing above to make sure all notebooks are valid JSON until you get
a successful git status. Make a commit on the real branch

git add .
git commit -m "stripped notebooks from target branch"
git merge test_merge_cool-feature-into-development

This should succeed without conflict.

Cleanup

Remove the test branch

git branch -d test_merge_cool-feature-into-development

Then you must deactivate the filter

nbstripout --uninstall

Now you can move around the unclean branches without triggering crashes left and right.

While you’re at it, leave the venv

deactivate

Some additional notes on the filter:

When you have the filter active and checkout a normal branch, it will checkout AND strip the outputs in git’s mind
(not the HEAD version though. . . confusing)

When you have the filter active and leave a branch that has outputs, it will generate changes, thereby not allowing you
to checkout without committing changes

You can turn it on and off with the nbstripout --install, nbstripout --uninstall commands, as
long as the attributes file has nothing else in it This is the easiest way to check: cat .git/info/attributes

2.5.2 Command-line tools

These are installed with lightlab.

lightlab config

The lightlab config tool manipulates an ini-style file that contains some configuration information for lightlab.
This file can be stored in /usr/local/etc/lightlab.conf and/or ~/.lightlab/config.conf. Values
defined in the second overrides the first, which in turn overrides default values.

86 Chapter 2. Installation

https://docs.python.org/3/library/configparser.html

Lightlab Documentation, Release 1.1.0

Here’s how to use:

$ lightlab config

usage: lightlab config [-h] [--system] [command] ...

positional arguments:
command write-default: write default configuration

get [a.b [a2.b2]]: get configuration values
set a.b c: set configuration value
reset a[.b]: unset configuration value

params

optional arguments:
-h, --help show this help message and exit
--system manipulate lightlab configuration for all users. run as root.

$ lightlab config get # reads all variables
labstate.filepath: ~/.lightlab/labstate.json

$ lightlab config set labstate.filepath ~/.lightlab/newpath.json
----saving /Users/tlima/.lightlab/config.conf----
[labstate]
filepath = /Users/tlima/.lightlab/newpath.json

$ lightlab config set labstate.filepath '~/.lightlab/newpath.json'
----saving /Users/tlima/.lightlab/config.conf----
[labstate]
filepath = ~/.lightlab/newpath.json

$ lightlab config get
labstate.filepath: ~/.lightlab/newpath.json

$ lightlab config --system get
labstate.filepath: ~/.lightlab/labstate.json

$ lightlab config reset labstate # could be labstate.filepath
labstate.* reset.
----saving /Users/tlima/.lightlab/config.conf----

$ lightlab config get
labstate.filepath: ~/.lightlab/labstate.json

Interesting for server configurations

$ lightlab config --system set labstate.filepath '/usr/local/etc/lightlab/labstate-
→˓system.json'
Write permission to /usr/local/etc/lightlab.conf denied. You cannot save. Try again
→˓with sudo.

$ sudo lightlab config --system set labstate.filepath '/usr/local/etc/lightlab/
→˓labstate-system.json'
Password:
----saving /usr/local/etc/lightlab.conf----
[labstate]
filepath = /usr/local/etc/lightlab/labstate-system.json

(continues on next page)

2.5. Miscellaneous Documentation 87

Lightlab Documentation, Release 1.1.0

(continued from previous page)

$ lightlab config get
labstate.filepath: /usr/local/etc/lightlab/labstate-system.json

2.5.3 How to set up this sweet documentation workflow

Purely for informing other projects in the future. Users and developers on this project do not have to do any of this. It
is setup for you.

1. Install what you need into your virtual environment:

$ pip install Sphinx
$ pip install sphinx_rtd_template
$ pip install sphinxcontrib-napoleon
$ pip freeze > requirements.txt

2. Set up the sphinx project:

$ sphinx-quickstart

3. Advanced configure within the conf.py file

• Specify extensions. I use these:

extensions = ['sphinx.ext.autodoc',
'sphinx.ext.napoleon',
'sphinx.ext.todo',
'sphinx.ext.mathjax',
'sphinx.ext.ifconfig',
'sphinx.ext.viewcode']

• Configuration of Napoleon:

napoleon_google_docstring = True
napoleon_use_param = True

• Configuration of Autodocumentation:

autodoc_member_order = 'bysource'
autoclass_content = 'both'

• Template configuration for readthedocs style:

import sphinx_rtd_theme
html_theme = 'sphinx_rtd_theme'
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

• Mock up for external modules imported in your code:

import sys
from unittest.mock import MagicMock

class Mock(MagicMock):
(continues on next page)

88 Chapter 2. Installation

Lightlab Documentation, Release 1.1.0

(continued from previous page)

@classmethod
def __getattr__(cls, name):

return MagicMock()

MOCK_MODULES = ['numpy',
'matplotlib',
'matplotlib.pyplot',
'matplotlib.figure',
'scipy',
'scipy.optimize']

sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES)

4. Further documentation here

• Sphinx overview

• ReST primer

• Napoleon

• genindex

• modindex

• search

• genindex

• modindex

• search

2.5. Miscellaneous Documentation 89

http://www.sphinx-doc.org/en/stable/tutorial.html
http://www.sphinx-doc.org/en/stable/rest.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/

Lightlab Documentation, Release 1.1.0

90 Chapter 2. Installation

CHAPTER 3

API

3.1 lightlab package

Submodules:

3.1.1 lightlab.command_line module

Summary

Functions:

labstate_main
main

Data:

version str(object=’‘) -> str str(bytes_or_buffer[, encoding[, er-
rors]]) -> str

Reference

main()

labstate_main(args)

Subpackages:

91

Lightlab Documentation, Release 1.1.0

3.1.2 lightlab.equipment package

Subpackages:

lightlab.equipment.abstract_drivers package

Submodules:

lightlab.equipment.abstract_drivers.TekScopeAbstract module

Summary

Classes:

TekScopeAbstract General class for several Tektronix scopes, including

Reference

class TekScopeAbstract(headerIsOptional=True, verboseIsOptional=False, precedingColon=True,
interveningSpace=True, **kwargs)

Bases: lightlab.equipment.abstract_drivers.configurable.Configurable,
lightlab.equipment.abstract_drivers.AbstractDriver

General class for several Tektronix scopes, including

• DPO 4034

• DPO 4032

• DSA 8300

• TDS 6154C

The main method is acquire(), which takes and returns a Waveform.

Todo: These behave differently. Be more explicit about sample mode:

timebaseConfig(avgCnt=1)
acquire([1])

acquire([1], avgCnt=1)

Does DPO support sample mode at all?

totalChans = None

startup()

timebaseConfig(avgCnt=None, duration=None, position=None, nPts=None)
Timebase and acquisition configure

Parameters

• avgCnt (int) – averaging done by the scope

92 Chapter 3. API

http://websrv.mece.ualberta.ca/electrowiki/images/8/8b/MSO4054_Programmer_Manual.pdf
http://websrv.mece.ualberta.ca/electrowiki/images/8/8b/MSO4054_Programmer_Manual.pdf
http://download.tek.com/manual/DSA8300-Programmer-Manual-077057006.pdf
http://www.tek.com/sites/tek.com/files/media/media/resources/55W_14873_9.pdf
https://docs.python.org/3/library/functions.html#int

Lightlab Documentation, Release 1.1.0

• duration (float) – time, in seconds, for data to be acquired

• position (float) – trigger delay

• nPts (int) – number of samples taken

Returns (dict) The present values of all settings above

acquire(chans=None, timeout=None, **kwargs)
Get waveforms from the scope.

If chans is None, it won’t actually trigger, but it will configure.

If unspecified, the kwargs will be derived from the previous state of the scope. This is useful if you want
to play with it in lab while working with this code too.

Parameters

• chans (list) – which channels to record at the same time and return

• avgCnt (int) – number of averages. special behavior when it is 1

• duration (float) – window width in seconds

• position (float) – trigger delay

• nPts (int) – number of sample points

• timeout (float) – time to wait for averaging to complete in seconds If it is more than
a minute, it will do a test first

Returns recorded signals

Return type list[Waveform]

wfmDb(chan, nWfms, untriggered=False)
Transfers a bundle of waveforms representing a signal database. Sample mode only.

Configuration such as position, duration are unchanged, so use an acquire(None, . . .) call to set them up

Parameters

• chan (int) – currently this only works with one channel at a time

• nWfms (int) – how many waveforms to acquire through sampling

• untriggered (bool) – if false, temporarily puts scope in free run mode

Returns all waveforms acquired

Return type (FunctionBundle(Waveform))

run(continuousRun=True)
Sets the scope to continuous run mode, so you can look at it in lab, or to single-shot mode, so that data can
be acquired

Parameters continuousRun (bool) –

setMeasurement(measIndex, chan, measType)

Parameters

• measIndex (int) – used to refer to this measurement itself. 1-indexed

• chan (int) – the channel source of the measurement.

• measType (str) – can be ‘PK2PK’, ‘MEAN’, etc.

measure(measIndex)

3.1. lightlab package 93

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Lightlab Documentation, Release 1.1.0

Parameters measIndex (int) – used to refer to this measurement itself. 1-indexed

Returns (float)

autoAdjust(chans)
Adjusts offsets and scaling so that waveforms are not clipped

lightlab.equipment.abstract_drivers.configurable module

Summary

Exceptions:

AccessException

Classes:

Configurable Instruments can be configurable to keep track of settings
within the instrument

TekConfig Wraps a dictionary attribute.

Reference

exception AccessException
Bases: Exception

class TekConfig(initDict=None)
Bases: object

Wraps a dictionary attribute. Uses dpath for operations.

Commands are defined as tuples (cStr, val). For example (‘:PATH:TO:CMD’, 4). Use these by doing
scope.write(‘ ‘.join(TekConfig.get(‘PATH:TO:CMD’))) The val is always a string.

Todo: :transferring subgroup from one instance to another. :returning a dictionary representing a subgroup
(actually this might currently be happening in error) :transferring subgroup values to a different subgroup in the
same instance (for example, CH1 to CH2)

separator = ':'

print(subgroup=”)

copy(subgroup=”)

get(cStr, asCmd=True)
Returns the value only, not a dictionary

Parameters asCmd (bool) – if true, returns a tuple representing a command. Otherwise returns
just the value

set(cStr, val)
Takes the value only, not a dictionary

getList(subgroup=”, asCmd=True)
Deep crawler that goes in and generates a command for every leaf.

94 Chapter 3. API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

Parameters

• subgroup (str) – subgroup must be a subdirectory. If ‘’, it is root directory. It can also
be a command string, in which case, the returned list has length 1

• asCmd (bool) – if false, returns a list of strings that can be sent to scopes

Returns list of valid commands (cstr, val) on the subgroup subdirectory

Return type list

setList(cmdList)
The inverse of getList

transfer(source, subgroup=”)
Pulls config from the source TekConfig object. This is useful for subgrouping.

For example, you might want to load from default only the trigger configuration.

Parameters

• source (TekConfig or dict) – the object from which config values are pulled into
self

• subgroup (str) – subgroup must be a subdirectory. If ‘’, it is root directory. It can also
be a command string, in which case, only that parameter is affected

classmethod fromFile(fname, subgroup=”)

classmethod fromSETresponse(setResponse, subgroup=”)
setResponse (str): what is returned by the scope in response to query(‘SET?’)

It will require some parsing for subgroup shorthand

save(fname, subgroup=”, overwrite=False)
Saves dictionary parameters in json format. Merges if there’s something already there, unless overwrite is
True.

Parameters

• fname (str) – file name

• subgroup (str) – groups of commands to write. If ‘’, it is everything.

• overwrite (bool) – will make a new file exactly corresponding to this instance, other-
wise merges with existing

class Configurable(headerIsOptional=True, verboseIsOptional=False, precedingColon=True, inter-
veningSpace=True, **kwargs)

Bases: lightlab.equipment.abstract_drivers.AbstractDriver

Instruments can be configurable to keep track of settings within the instrument

This class is setup so that the hardware state is reflected exactly in the ‘live’ config unless somebody changes
something in lab. Watch out for that and use forceHardware if that is a risk

This clas uses query/write methods that are not directly inherited, so the subclass or its parents must implement
those functions

config = None
Dictionary of TekConfig objects.

initHardware()
Runs upon first hardware access. Tells the instrument how to format its commands

3.1. lightlab package 95

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

setConfigParam(cStr, val=None, forceHardware=False)
Sets an individual configuration parameter. If the value has been read before, and there is no change, then
it will not write to the hardware.

Parameters

• cStr (str) – name of the command

• val (any) – value to send. Detects type, so if it’s an int, it will be stored as int

• forceHardware (bool) – will always send to hardware, in case it is critical or if it
tends to be changed by pesky lab users

Returns Did it requre a write to hardware?

Return type (bool)

getConfigParam(cStr, forceHardware=False)
Gets a single parameter. If the value has been read before, and there is no change, then it will not query
the hardware.

This is much faster than getting from hardware; however, it assumes that nobody in lab touched anything.

Parameters

• cStr (str) – name of the command

• forceHardware (bool) – will always query from hardware, in case it is critical or if
it tends to be changed by pesky lab users

Returns command value. Detects type, so that '2.5' will return as float

Return type (any)

If the command is not recognized, attempts to get it from hardware

tempConfig(cStr, tempVal, forceHardware=False)
Changes a parameter within the context of a “with” block. Args are same as in getConfigParam().

getDefaultFilename()
Combines the lightlab.util.io.paths.defaultFileDirwith the *IDN? string of this instru-
ment.

Returns the default filename

Return type (str)

saveConfig(dest=’+user’, subgroup=”, overwrite=False)
If you would like to setup a temporary state (i.e. taking some measurements and going back), use a file
and subgroup=

Parameters subgroup (str) – a group of commands or a single command. If ‘’, it means
everything.

Side effects: if dest is object or dict, modifies it if dest is token, modifies the config library of self if dest
is filename, writes that file

loadConfig(source=’+user’, subgroup=”)
Loads some configuration parameters from a source which is either:

• a file name string, or

• a special token [‘+default’ or ‘+init’], or

• some TekConfig object or dict you have out there

96 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Lightlab Documentation, Release 1.1.0

Parameters

• source (str/TekConfig) – load source

• subgroup (str) – a group of commands or a single command. If ‘’, it means everything.

generateDefaults(filename=None, overwrite=False)
Attempts to read every configuration parameter. Handles several cases where certain parameters do not
make sense and must be skipped

Generates a new default file which is saved in configurable.defaultFileDir

This takes a while.

Parameters

• filename (str) – simple name. You can’t control the directory.

• overwrite (bool) – If False, stops if the file already exists.

lightlab.equipment.abstract_drivers.electrical_sources module

Summary

Classes:

MultiChannelSource This thing basically holds a dict state and provides some
critical methods

MultiModalSource Checks modes for sources with multiple ways to spec-
ify.

Reference

class MultiModalSource
Bases: object

Checks modes for sources with multiple ways to specify.

Also checks ranges

Default class constants come from NI PCI source array

supportedModes = {'baseunit', 'milliamp', 'volt', 'mwperohm', 'amp', 'wattperohm'}

baseUnitBounds = [0, 1]

baseToVoltCoef = 10

v2maCoef = 4

exceptOnRangeError = False

classmethod enforceRange(val, mode)
Returns clipped value. Raises RangeError

classmethod val2baseUnit(value, mode)
Converts to the voltage value that will be applied at the PCI board Depends on the current mode state of
the instance

Args: value (float or dict)

3.1. lightlab package 97

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

classmethod baseUnit2val(baseVal, mode)
Converts the voltage value that will be applied at the PCI board back into the units of th instance This is
useful for bounds checking

Args: baseVal (float or dict)

class MultiChannelSource(useChans=None, **kwargs)
Bases: object

This thing basically holds a dict state and provides some critical methods

There is no mode

Checks for channel compliance. Handles range exceptions

maxChannel = None

elChans
Returns the blocked out channels as a list

setChannelTuning(chanValDict)
Sets a number of channel values and updates hardware

Parameters

• chanValDict (dict) – A dictionary specifying {channel: value}

• waitTime (float) – time in ms to wait after writing, default (None) is defined in the
class

Returns was there a change in value

Return type (bool)

getChannelTuning()
The inverse of setChannelTuning

Parameters mode (str) – units of the value in (‘mwperohm’, ‘milliamp’, ‘volt’)

Returns the full state of blocked out channels in units determined by mode argument

Return type (dict)

off(*setArgs)
Turn all voltages to zero, but maintain the session

lightlab.equipment.abstract_drivers.multimodule_configurable module

Summary

Classes:

ConfigModule A module that has an associated channel and keeps track
of parameters within that channel.

MultiModuleConfigurable Keeps track of a list of Configurable objects, each
associated with a channel number.

98 Chapter 3. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Lightlab Documentation, Release 1.1.0

Reference

class ConfigModule(channel, bank, **kwargs)
Bases: lightlab.equipment.abstract_drivers.configurable.Configurable

A module that has an associated channel and keeps track of parameters within that channel. Updates only when
changed or with forceHardware. It communicates with a bank instrument of which it is a part. When it
writes to hardware, it selects itself by first sending 'CH 2' (if it were initialized with channel 2)

Parameters

• channel (int) – its channel that will be written before writing/querying

• bank (MultiModuleConfigurable) – enclosing bank

selectPrefix = 'CH'

write(writeStr)
Regular write in the enclosing bank, except preceded by select self

query(queryStr)
Regular query in the enclosing bank, except preceded by select self

class MultiModuleConfigurable(useChans=None, configModule_klass=<class ’light-
lab.equipment.abstract_drivers.configurable.Configurable’>,
**kwargs)

Bases: lightlab.equipment.abstract_drivers.AbstractDriver

Keeps track of a list of Configurable objects, each associated with a channel number. Provides array and
dict setting/getting.

Parameter values are cached just like in Configurable. That means hardware access is lazy: No write/queries
are performed unless a parameter is not yet known, or if the value changes.

When the module classes are ConfigModule, then this supports multi-channel instruments where channels
are selectable. This is used in cases where, for example, querying the wavelength of channel 2 would take these
messages:

self.write('CH 2')
wl = self.query('WAVE')

Parameters

• useChans (list(int)) – integers that indicate channel number.

• to key dictionaries and write select messages. (Used) –

• configModule_klass (type) – class that members will be initialized as.

• Configurable, this object is basically a container; however,
(When) –

• ConfigModule, there is special behavior for multi-channel
instruments. (when) –

maxChannel = None

getConfigArray(cStr)
Iterate over modules getting the parameter at each

Parameters cStr (str) – parameter name

Returns values for all modules, ordered based on the ordering of useChans

3.1. lightlab package 99

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str

Lightlab Documentation, Release 1.1.0

Return type (np.ndarray)

setConfigArray(cStr, newValArr, forceHardware=False)
Iterate over modules setting the parameter to the corresponding array value.

Values for ALL channels must be specified. To only change some, use the dictionary-based setter:
setConfigDict

Parameters

• cStr (str) – parameter name

• newValArr (np.ndarray, list) – values in same ordering as useChans

• forceHardware (bool) – guarantees sending to hardware

Returns did any require hardware write?

Return type (bool)

getConfigDict(cStr)

Parameters cStr (str) – parameter name

Returns parameter on all the channels, keyed by channel number

Return type (dict)

setConfigDict(cStr, newValDict, forceHardware=False)

Parameters

• cStr (str) – parameter name

• newValDict (array) – dict keyed by channel number

• forceHardware (bool) – guarantees sending to hardware

Returns did any require hardware write?

Return type (bool)

moduleIds
list of module ID strings

lightlab.equipment.abstract_drivers.power_meters module

Summary

Classes:

PowerMeterAbstract For the HP_8152A and the Advantest_Q8221

Reference

class PowerMeterAbstract
Bases: lightlab.equipment.abstract_drivers.AbstractDriver

For the HP_8152A and the Advantest_Q8221

channelDescriptions = {1: 'A', 2: 'B', 3: 'A/B'}

100 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
http://www.lightwavestore.com/product_datasheet/OTI-OPM-L-030C_pdf4.pdf
https://www.advantest.com/documents/11348/146687/pdf_mn_EQ7761_PROGRAMMING_GUIDE.pdf
http://www.lightwavestore.com/product_datasheet/OTI-OPM-L-030C_pdf4.pdf
https://www.advantest.com/documents/11348/146687/pdf_mn_EQ7761_PROGRAMMING_GUIDE.pdf

Lightlab Documentation, Release 1.1.0

validateChannel(channel)
Raises an error with info if not a valid channel

powerLin(channel=1)

Summary

Classes:

AbstractDriver In case there is future functionality

Reference

class AbstractDriver
Bases: object

In case there is future functionality

lightlab.equipment.lab_instruments package

Submodules:

lightlab.equipment.lab_instruments.Advantest_Q8221_PM module

Summary

Classes:

Advantest_Q8221_PM Q8221 Optical Multi-power Meter

Reference

class Advantest_Q8221_PM(name=’The Advantest power meter’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.power_meters.PowerMeterAbstract

Q8221 Optical Multi-power Meter

Manual

Usage: Instrument: PowerMeter

instrument_category
alias of lightlab.laboratory.instruments.interfaces.PowerMeter

channelDescriptions = {1: 'A', 2: 'B', 3: 'A/B'}

startup()
Behaves the same as super.

Todo: Read manual and set the channels to DBM and default channel to A

3.1. lightlab package 101

https://docs.python.org/3/library/functions.html#object
https://www.advantest.com/documents/11348/146687/pdf_mn_EQ7761_PROGRAMMING_GUIDE.pdf

Lightlab Documentation, Release 1.1.0

• Default read: "DBA-054.8686E+00\r\n"

• query(“CH1”): "DBB-054.8686E+00\r\n"

open()

powerDbm(channel=1)
The detected optical power in dB on the specified channel

Parameters channel (int) – Power Meter channel

Returns Power in dB or dBm

Return type (double)

lightlab.equipment.lab_instruments.Agilent_33220_FG module

Summary

Classes:

Agilent_33220_FG Function Generator

Reference

class Agilent_33220_FG(name=’Agilent synth’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.configurable.Configurable

Function Generator

Manual

Usage: Instrument: FunctionGenerator

instrument_category
alias of lightlab.laboratory.instruments.interfaces.FunctionGenerator

amplitudeRange = (0.01, 10)

startup()

enable(enaState=None)

frequency(newFreq=None)

waveform(newWave=None)
Available tokens are (with optional part in brackets): ‘dc’, ‘sin[usoid]’, ‘squ[are]’, ‘ramp’, ‘puls[e]’,
‘nois[e]’, ‘user’

setArbitraryWaveform(wfm)
Arbitrary waveform

Todo: implement

amplAndOffs(amplOffs=None)
Amplitude and offset setting/getting

102 Chapter 3. API

https://docs.python.org/3/library/functions.html#int
http://ecelabs.njit.edu/student_resources/33220_user_guide.pdf

Lightlab Documentation, Release 1.1.0

Only uses the data-bar because the other one is broken

Parameters

• amplOffs (tuple(float)) – new amplitude (p2p) and offset in volts

• either is None, returns but does not set (If) –

Returns amplitude and offset, read from hardware if specified as None

Return type (tuple(float))

Critical: Offset control is not working. Some sort of dictionary conflict in ‘VOLT’

duty(duty=None)
duty is in percentage. For ramp waveforms, duty is the percent of time spent rising.

Critical: Again, this is having dpath troubles.

lightlab.equipment.lab_instruments.Agilent_83712B_clock module

Summary

Classes:

Agilent_83712B_clock Where is manual?

Reference

class Agilent_83712B_clock(name=’The clock on PPG’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.configurable.Configurable

Where is manual?

Usage: Instrument: Clock

instrument_category
alias of lightlab.laboratory.instruments.interfaces.Clock

startup()

enable(enaState=None)

frequency

lightlab.equipment.lab_instruments.Agilent_N5183A_VG module

Summary

Classes:

Agilent_N5183A_VG Agilent N5183A Vector Generator

3.1. lightlab package 103

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

Reference

class Agilent_N5183A_VG(name=’The 40GHz clock’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.configurable.Configurable

Agilent N5183A Vector Generator

Manual

Usage: Instrument: Clock

Todo: Clock interface does not see sweepSetup and sweepEnable

instrument_category
alias of lightlab.laboratory.instruments.interfaces.Clock

amplitude(amp=None)
Amplitude is in dBm

Parameters amp (float) – If None, only gets

Returns output power amplitude

Return type (float)

frequency(freq=None)
Frequency is in Hertz

Setting the frequency takes you out of sweep mode automatically

Parameters freq (float) – If None, only gets

Returns center frequency

Return type (float)

enable(enaState=None)
Enabler for the output

Parameters enaState (bool) – If None, only gets

Returns is RF output enabled

Return type (bool)

sweepSetup(startFreq, stopFreq, nPts=100, dwell=0.1)
Configure sweep. See instrument for constraints; they are not checked here.

Does not auto-enable. You must also call :meth:‘sweepEnable‘

Parameters

• startFreq (float) – lower frequency in Hz

• stopFreq (float) – upper frequency in Hz

• nPts (int) – number of points

• dwell (float) – time in seconds to wait at each sweep point

Returns None

sweepEnable(swpState=None)
Switches between sweeping (True) and CW (False) modes

104 Chapter 3. API

http://www.manualsbase.com/manual/608672/portable_generator/agilent_technologies/n5183a_mxg/
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

Parameters swpState (bool) – If None, only gets, doesn’t set.

Returns is the output sweeping

Return type (bool)

lightlab.equipment.lab_instruments.Agilent_N5222A_NA module

Summary

Classes:

Agilent_N5222A_NA Agilent PNA N5222A , RF network analyzer

Reference

class Agilent_N5222A_NA(name=’The network analyzer’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.configurable.Configurable

Agilent PNA N5222A , RF network analyzer

Manual

WARNING: The address is the same as the slow function generator, so don’t use both on andromeda at the same
time.

Steep learning curve.

Usage: Instrument: NetworkAnalyzer

Todo: All the RF equipment is reusing __enaBlock. Make this a method of Configurable.

When setting up general, you have to setup sweep before setting CW frequency, or else the CW freq becomes
the start frequency. Why? See hack in sweepSetup.

instrument_category
alias of lightlab.laboratory.instruments.interfaces.NetworkAnalyzer

startup()

amplitude(amp=None)
Amplitude is in dBm

Parameters amp (float) – If None, only gets

Returns output power amplitude

Return type (float)

frequency(freq=None)
Frequency is in Hertz

Setting the frequency takes you out of sweep mode automatically

Parameters freq (float) – If None, only gets

Returns center frequency

3.1. lightlab package 105

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
http://na.support.keysight.com/pna/help/PNAHelp9_90.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

Return type (float)

enable(enaState=None)
Enabler for the entire output

Parameters enaState (bool) – If None, only gets

Returns is RF output enabled

Return type (bool)

run()

sweepSetup(startFreq, stopFreq, nPts=None, dwell=None, ifBandwidth=None)
Configure sweep. See instrument for constraints; they are not checked here.

Does not auto-enable. You must also call :meth:‘sweepEnable‘

Parameters

• startFreq (float) – lower frequency in Hz

• stopFreq (float) – upper frequency in Hz

• nPts (int) – number of points

• dwell (float) – time in seconds to wait at each sweep point. Default is minimum.

Returns None

sweepEnable(swpState=None)
Switches between sweeping (True) and CW (False) modes

Parameters swpState (bool) – If None, only gets, doesn’t set.

Returns is the output sweeping

Return type (bool)

normalize()

triggerSetup(useAux=None, handshake=None, isSlave=False)

getSwpDuration(forceHardware=False)

measurementSetup(measType=’S21’, chanNum=None)

spectrum()

multiSpectra(nSpect=1, livePlot=False)

lightlab.equipment.lab_instruments.Anritsu_MP1763B_PPG module

Summary

Classes:

Anritsu_MP1763B_PPG ANRITSU MP1761A PulsePatternGenerator The PPG
MP1763B at Alex’s bench, which also support
MP1761A (by Hsuan-Tung 07/27/2017)

106 Chapter 3. API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

Reference

class Anritsu_MP1763B_PPG(name=’The PPG’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.configurable.Configurable

ANRITSU MP1761A PulsePatternGenerator The PPG MP1763B at Alex’s bench, which also support MP1761A
(by Hsuan-Tung 07/27/2017)

Manual (MP1763C): http://www.otntech.com/modules/catalogue/download.php?id=52&mode=download&
file_name=MP1763C.pdf

Usage: Instrument: PulsePatternGenerator

instrument_category
alias of lightlab.laboratory.instruments.interfaces.PulsePatternGenerator

storedPattern = None

startup()

setPrbs(length)
Generates a PRBS

setPattern(bitArray)
Data bitArray for the PPG to output.

Parameters bitArray (ndarray) – array that is boolean or binary 1/0

getPattern()
Inverts the setPattern method, so you can swap several patterns around on the fly. Does not communicate
with the hardware as of now.

on(turnOn=True)

syncSource(src=None)
Output synchronizer is locked to pattern or not?

Parameters src (str) – either ‘fixed’, ‘variable’ or ‘clock64’. If None, leaves it

Returns the set value as a string token

Return type (str)

amplAndOffs(amplOffs=None)
Amplitude and offset setting/getting

Parameters

• amplOffs (tuple(float)) – new amplitude and offset in volts

• either is None, returns but does not set (If) –

Returns amplitude and offset, read from hardware if specified as None

Return type (tuple(float))

bitseq(chpulses, clockfreq, ext=0, addplot=False, mult=1, res=5)
bitseq: Takes in dictionary ‘chpulses’, clock freq ‘clockfreq’, and opt. parameter ‘ext.’ Also includes
plotting parameters (see below). chdelays: a dictionary in which keys are channel delays, and values
contain a list of tuple pairs. Each pair contains pulse times (rising edges) and their duration (in ns).
clockfreq: set the current clock frequency, in GHz ext: a continuous value from 0 to 1 which extends the
pattern length, resulting in different synchronization between adjacent time windows. 0 – will result in
maximum similarity between time windows, plus or minus variabilities resulting from delay lines. This
is ideal when only approximate timings are required, since channels IDs can be shuffled by time scrolling

3.1. lightlab package 107

http://www.otntech.com/modules/catalogue/download.php?id=52&mode=download&file_name=MP1763C.pdf
http://www.otntech.com/modules/catalogue/download.php?id=52&mode=download&file_name=MP1763C.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

through the same PPG pattern. 1 – will result in minimum similarity between adjacent time windows, at
the cost of a larger total PPG pattern length. Anything beyond this value is not useful. Values between 0
and 1 will trade-off pattern length with window similarity. addplot: Adds a plot to visualize the output of
the PPG along all channels. mult: graphing parameter - how many multiples of pattern length to display
in time res: graphing parameter - how many sampling points per pattern bit Author: Mitchell A. Nahmias,
Feb. 2018

classmethod PRBS_pattern(order, mark_ratio=0.5)

lightlab.equipment.lab_instruments.Apex_AP2440A_OSA module

Summary

Classes:

Apex_AP2440A_OSA Class for the OSA

Functions:

check_socket

Data:

WIDEST_WLRANGE list() -> new empty list list(iterable) -> new list initial-
ized from iterable’s items

Reference

check_socket(host, port)

class Apex_AP2440A_OSA(name=’The OSA’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver

Class for the OSA

Basic functionality includes setting/getting wavelength range and sweeping Other functionality is for controlling
TLS: on/off, wavelength (not implemented)

The primary function is spectrum, which returns a Spectrum object

Usage: Instrument: OpticalSpectrumAnalyzer

Initializes a fake VISA connection to the OSA.

instrument_category
alias of lightlab.laboratory.instruments.interfaces.
OpticalSpectrumAnalyzer

MAGIC_TIMEOUT = 30

reinstantiate_session(address, tempSess)

startup()
Checks if it is alive, sets up standard OSA parameters

open()

108 Chapter 3. API

Lightlab Documentation, Release 1.1.0

close()

query(queryStr, expected_talker=None)

write(writeStr, expected_talker=None)
The APEX does not deal with write; you have to query to clear the buffer

instrID()
Overloads the super function because the OSA does not respond to *IDN? Instead sends a simple command
and waits for a confirmed return

getWLrangeFromHardware()

wlRange

triggerAcquire()
Performs a sweep and reads the data Returns an array of dBm values as doubles :rtype: array

transferData()
Performs a sweep and reads the data

Gets the data of the sweep from the spectrum analyzer

Returns wavelength in nm, power in dBm

Return type (ndarray, ndarray)

spectrum(average_count=1)
Take a new sweep and return the new data. This is the primary user function of this class

tlsEnable

tlsWl

lightlab.equipment.lab_instruments.Arduino_Instrument module

Summary

Classes:

Arduino_Instrument Read/write interface for an arduino.

Reference

class Arduino_Instrument(name=’Arduino’, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver

Read/write interface for an arduino. Could make use of TCPIP or maybe USB

Usage: TODO

Todo: To be implemented.

instrument_category
alias of lightlab.laboratory.instruments.interfaces.ArduinoInstrument

write(writeStr)

3.1. lightlab package 109

Lightlab Documentation, Release 1.1.0

query(queryStr, withTimeout=None)

lightlab.equipment.lab_instruments.HP_8116A_FG module

Summary

Classes:

HP_8116A_FG Function Generator

Reference

class HP_8116A_FG(name=’The slow synth (FUNCTION GENERATOR)’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.configurable.Configurable

Function Generator

Manual

Usage: Instrument: FunctionGenerator

instrument_category
alias of lightlab.laboratory.instruments.interfaces.FunctionGenerator

amplitudeRange = (0.01, 10)

startup()

instrID()

enable(enaState=None)

frequency(newFreq=None)

waveform(newWave=None)
Available tokens are ‘dc’, ‘sine’, ‘triangle’, ‘square’, ‘pulse’

amplAndOffs(amplOffs=None)
Amplitude and offset setting/getting

Only uses the data-bar because the other one is broken

Parameters

• amplOffs (tuple(float)) – new amplitude and offset in volts

• either is None, returns but does not set (If) –

Returns amplitude and offset, read from hardware if specified as None

Return type (tuple(float))

duty(duty=None)
duty is in percentage

110 Chapter 3. API

http://www.nousnexus.com/Manuals/Agilent_HP_8116A_manual.pdf
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

lightlab.equipment.lab_instruments.HP_8152A_PM module

Summary

Classes:

HP_8152A_PM HP8152A power meter

Reference

class HP_8152A_PM(name=’The HP power meter’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.power_meters.PowerMeterAbstract

HP8152A power meter

Manual

Usage: Instrument: PowerMeter

Todo: Maybe allow a rapid continuous mode that just spits out numbers (‘T0’)

instrument_category
alias of lightlab.laboratory.instruments.interfaces.PowerMeter

channelDescriptions = {1: 'A', 2: 'B', 3: 'A/B'}

doReadDoubleCheck = False

startup()

open()

static proccessWeirdRead(readString)
The HP 8152 sometimes sends double characters. This tries to fix it based on reasonable value ranges.

We assume that the values encountered have a decimal point and have two digits before and after the
decimal point

Arg: readString (str): what is read from query(‘TRG’)

Returns checked string

Return type (str)

robust_query(*args, **kwargs)
Conditionally check for read character doubling

powerDbm(channel=1)
The detected optical power in dB on the specified channel

Parameters channel (int) – Power Meter channel

Returns Power in dB or dBm

Return type (double)

3.1. lightlab package 111

http://www.lightwavestore.com/product_datasheet/OTI-OPM-L-030C_pdf4.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Lightlab Documentation, Release 1.1.0

lightlab.equipment.lab_instruments.HP_8156A_VA module

Summary

Classes:

HP_8156A_VA HP8156A variable attenuator

Reference

class HP_8156A_VA(name=’The VOA on the GC bench’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver

HP8156A variable attenuator

Manual

Usage: Instrument: VariableOpticalAttenuator

instrument_category
alias of lightlab.laboratory.instruments.interfaces.VariableAttenuator

safeSleepTime = 1

startup()

on()

off()

setAtten(val, isLin=True)
Simple method instead of property access

attenDB

attenLin

sendToHardware(sleepTime=None)

wavelength

calibration

lightlab.equipment.lab_instruments.HP_8157A_VA module

Summary

Classes:

HP_8157A_VA HP8157A variable attenuator

Reference

class HP_8157A_VA(name=’The VOA on the Minerva bench’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver

112 Chapter 3. API

https://www.artisantg.com/info/ATGt6b5s.pdf

Lightlab Documentation, Release 1.1.0

HP8157A variable attenuator

Manual

Usage: Instrument: VariableOpticalAttenuator

instrument_category
alias of lightlab.laboratory.instruments.interfaces.VariableAttenuator

safeSleepTime = 1

startup()

on()

off()

setAtten(val, isLin=True)
Simple method instead of property access

attenDB

attenLin

sendToHardware(sleepTime=None)

calibration
Calibration compensates for the insertion loss of the instruments.

wavelength

lightlab.equipment.lab_instruments.ILX_7900B_LS module

Summary

Classes:

ILX_7900B_LS The laser banks (ILX 7900B laser source).
ILX_Module Handles 0 to 1 indexing

Reference

class ILX_Module(channel, **kwargs)
Bases: lightlab.equipment.abstract_drivers.multimodule_configurable.
ConfigModule

Handles 0 to 1 indexing

class ILX_7900B_LS(name=’The laser source’, address=None, useChans=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.multimodule_configurable.
MultiModuleConfigurable

The laser banks (ILX 7900B laser source). Provides array-based and dict-based setters/getters for

• whether laser is on or off (enableState)

• tunable wavelength output (wls)

• output power in dBm (powers)

3.1. lightlab package 113

https://literature.cdn.keysight.com/litweb/pdf/08157-90012.pdf?id=1859520

Lightlab Documentation, Release 1.1.0

Setting/getting logic is implemented in MultiModuleConfigurable, which treats the channels as inde-
pendent ConfigModules’s. This means that hardware communication is lazy – parameter values are cached,
and messages are only sent when they are unknown or when they change.

Manual

Usage: Instrument: LaserSource

Todo: Multiple users at the same time is desirable. We are close. Non blocked-out channels are never touched,
but there are still two issues

• Fundamental: VISA access with two python processes could collide

• Inconvenience: Have to create two different labstate instruments with different useChans for what
is actually one instrument – maybe a slice method?

instrument_category
alias of lightlab.laboratory.instruments.interfaces.LaserSource

maxChannel = 8

sleepOn = {'LEVEL': 5, 'OUT': 3, 'WAVE': 30}

powerRange = <MagicMock name='mock()' id='140411887256912'>

startup()

dfbChans
Returns the blocked out channels as a list

Currently, this is not an essentialProperty, so you have to access like:

ch = LS.driver.dfbChans

Returns channel numbers, 0-indexed

Return type (list)

setConfigArray(cStr, newValArr, forceHardware=False)
When any configuration is set, there is an equilibration time.

This adds sleep functionality, only when there is a change, for an amount determined by the sleepOn
class attribute.

enableState
**Returns* – (np.ndarray)* – enable states ordered like useChans

setChannelEnable(chanEnableDict)
Sets only some channel values with dict keyed by useChans, e.g. chanEnableDict={0: 1, 2:
0}

Parameters chanEnableDict (dict) – A dictionary keyed by channel with values 0 or 1

getChannelEnable()

Returns all channel enable states, keyed by useChans

Return type (dict)

wls
**Returns* – (np.ndarray)* – laser wavelengths in nanometers ordered like useChans

114 Chapter 3. API

http://assets.newport.com/webDocuments-EN/images/70032605_FOM-79800F_IX.PDF
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Lightlab Documentation, Release 1.1.0

setChannelWls(chanWavelengthDict)
Sets only some channel values with dict keyed by useChans, e.g. chanWavelengthDict={0:
1550.5, 2: 1551}

Parameters chanWavelengthDict (dict) – A dictionary keyed by channel with nanome-
ter values

getChannelWls()

Returns all channel wavelengths, keyed by useChans

Return type (dict)

powers
Laser powers

Returns laser output powers in dBm, ordered like useChans

Return type (np.ndarray)

setChannelPowers(chanPowerDict)
Sets only some channel values with dict keyed by useChans, e.g. chanPowerDict={0: 13, 2:
-10}

Parameters chanPowerDict (dict) – A dictionary keyed by channel with dBm values

getChannelPowers()

Returns all channel powers, keyed by useChans

Return type (dict)

wlRanges
Min/max wavelengths than can be covered by each channl. Wavelengths in nm.

Returns maximum ranges starting from lower wavelength

Return type (list(tuple))

getAsSpectrum()
Gives a spectrum of power vs. wavelength, which has the wavelengths present as an abscissa, and their
powers as ordinate (-120dBm if disabled)

It starts in dBm, but you can change to linear with the Spectrum.lin method

Returns The WDM spectrum of the present outputs

Return type (Spectrum)

allOff()

allOn()

off()

lightlab.equipment.lab_instruments.Keithley_2400_SM module

Summary

Classes:

Keithley_2400_SM A Keithley 2400 driver.

3.1. lightlab package 115

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

Lightlab Documentation, Release 1.1.0

Reference

class Keithley_2400_SM(name=None, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.configurable.Configurable

A Keithley 2400 driver.

Manual:

Usage: Instrument: Keithley and SourceMeter

Capable of sourcing current and measuring voltage, such as a Keithley

Also provides interface methods for measuring resistance and measuring power

Parameters

• currStep (float) – amount to step if ramping in current mode. Default (None) is no
ramp

• voltStep (float) – amount to step if ramping in voltage mode. Default (None) is no
ramp

• rampStepTime (float) – time to wait on each ramp step point

instrument_category
alias of lightlab.laboratory.instruments.interfaces.Keithley

autoDisable = None

currStep = None

voltStep = None

rampStepTime = 0.01

startup()

setPort(port)

setVoltageMode(protectionCurrent=0.05)

setCurrentMode(protectionVoltage=1)

setCurrent(currAmps)
This leaves the output on indefinitely

setVoltage(voltVolts)

getCurrent()

getVoltage()

setProtectionVoltage(protectionVoltage)

setProtectionCurrent(protectionCurrent)

protectionVoltage

protectionCurrent

measVoltage()

measCurrent()

enable(newState=None)
get/set enable state

116 Chapter 3. API

http://research.physics.illinois.edu/bezryadin/labprotocol/Keithley2400Manual.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

lightlab.equipment.lab_instruments.Keithley_2606B_SMU module

Driver class for Keithley 2606B.

The following programming example illustrates the setup and command sequence of a basic source-measure procedure
with the following parameters: • Source function and range: voltage, autorange • Source output level: 5 V • Current
compliance limit: 10 mA • Measure function and range: current, 10 mA

– Restore 2606B defaults. smua.reset() – Select voltage source function. smua.source.func =
smua.OUTPUT_DCVOLTS – Set source range to auto. smua.source.autorangev = smua.AUTORANGE_ON –
Set voltage source to 5 V. smua.source.levelv = 5 – Set current limit to 10 mA. smua.source.limiti = 10e-3 – Set
current range to 10 mA. smua.measure.rangei = 10e-3 – Turn on output. smua.source.output = smua.OUTPUT_ON
– Print and place the current reading in the reading buffer. print(smua.measure.i(smua.nvbuffer1)) – Turn off output.
smua.source.output = smua.OUTPUT_OFF

Summary

Classes:

Keithley_2606B_SMU Keithley 2606B 4x SMU instrument driver

Reference

class Keithley_2606B_SMU(name=None, address=None, tsp_node: int = None, channel: str = None,
**visa_kwargs)

Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver

Keithley 2606B 4x SMU instrument driver

Manual:

Usage: Unavailable

Capable of sourcing current and measuring voltage, as a Source Measurement Unit.

Parameters

• tsp_node – Number from 1 to 64 corresponding to the pre-configured TSP node number
assigned to each module.

• channel – ‘A’ or ‘B’

instrument_category
alias of lightlab.laboratory.instruments.interfaces.Keithley

MAGIC_TIMEOUT = 10

currStep = 0.0001

voltStep = 0.3

rampStepTime = 0.05

channel = None

tsp_node = None

reinstantiate_session(address, tempSess)

open()

3.1. lightlab package 117

https://download.tek.com/manual/2606B-901-01B_May_2018_Ref_Man.pdf

Lightlab Documentation, Release 1.1.0

close()

query(queryStr, expected_talker=None)

write(writeStr)

smu_string

smu_full_string

query_print(query_string, expected_talker=None)

smu_reset()

instrID()

is_master()
Returns true if this TSP node is the localnode.

The localnode is the one being interfaced with the Ethernet cable, whereas the other nodes are connected
to it via the TSP-Link ports.

tsp_startup(restart=False)
Ensures that the TSP network is available.

• Checks if tsplink.state is online.

• If offline, send a reset().

smu_defaults()

startup()

set_sense_mode(sense_mode=’local’)
Set sense mode. Defaults to local sensing.

setCurrent(currAmps)
This leaves the output on indefinitely

setVoltage(voltVolts)

getCurrent()

getVoltage()

setProtectionVoltage(protectionVoltage)

setProtectionCurrent(protectionCurrent)

compliance

measVoltage()

measCurrent()

protectionVoltage

protectionCurrent

enable(newState=None)
get/set enable state

setVoltageMode(protectionCurrent=0.05)

setCurrentMode(protectionVoltage=1)

118 Chapter 3. API

Lightlab Documentation, Release 1.1.0

lightlab.equipment.lab_instruments.NI_PCI_6723 module

Summary

Classes:

NI_PCI_6723 Primarily employs abstract classes.

Reference

class NI_PCI_6723(name=’The current source’, address=None, useChans=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.electrical_sources.MultiModalSource,
lightlab.equipment.abstract_drivers.electrical_sources.MultiChannelSource

Primarily employs abstract classes. Follow the bases for more information

VISAInstrumentDriver provides communication to the board

MultiModalSource provides unit support and range checking

MultiChannelSource provides notion of state (stateDict) and channel support

Usage: Instrument: CurrentSource

instrument_category
alias of lightlab.laboratory.instruments.interfaces.CurrentSource

supportedModes = {'milliamp', 'volt', 'mwperohm', 'amp', 'wattperohm'}

baseUnitBounds = [0, 10]

baseToVoltCoef = 1

v2maCoef = 4

exceptOnRangeError = True

maxChannel = 32

targetPort = 16022

waitMsOnWrite = 500

MAGIC_TIMEOUT = 30

reinstantiate_session(address, tempSess)

startup()

open()

close()

query(queryStr, expected_talker=None)

write(writeStr, expected_talker=None)
The APEX does not deal with write; you have to query to clear the buffer

instrID()
There is no “*IDN?” command. Instead, test if it is alive, and then return a reasonable string

tcpTest(num=2)

3.1. lightlab package 119

Lightlab Documentation, Release 1.1.0

setChannelTuning(chanValDict, mode, waitTime=None)
Sets a number of channel values and updates hardware

Parameters

• chanValDict (dict) – A dictionary specifying {channel: value}

• waitTime (float) – time in ms to wait after writing, default (None) is defined in the
class

Returns was there a change in value

Return type (bool)

getChannelTuning(mode)
The inverse of setChannelTuning

Parameters mode (str) – units of the value in (‘mwperohm’, ‘milliamp’, ‘volt’)

Returns the full state of blocked out channels in units determined by mode argument

Return type (dict)

off()
Turn all voltages to zero, but maintain the session

wake()
Don’t change the value but make sure it doesn’t go to sleep after inactivity.

Good for long sweeps

sendToHardware(waitTime=None)
Updates current drivers with the present value of tuneState Converts it to a raw voltage, depending on the
mode of the driver

Args:

lightlab.equipment.lab_instruments.RandS_SMBV100A_VG module

Summary

Classes:

RandS_SMBV100A_VG Rohde and Schwartz SMBV100A

Reference

class RandS_SMBV100A_VG(name=’The Rohde and Schwartz’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.configurable.Configurable

Rohde and Schwartz SMBV100A

Manual

Usage: TODO

This is a complicated class even though it is implementing about 1 percent of what the R&S can do. The
philosophy is that there are several blocks that work independently.

120 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_common_library/dl_manuals/gb_1/s/smbv/SMBV100A_OperatingManual_en_16.pdf

Lightlab Documentation, Release 1.1.0

1. Baseband digital modulation; accessed with digiMod()

2. Artificial Gaussian noise; accessed with addNoise()

3. RF carrier wave; accessed with amplitude(), frequency(), and carrierMod()

There are also global switches

1. All RF outputs; switched with enable()

2. All modulations; switched with modulationEnable()

instrument_category
alias of lightlab.laboratory.instruments.interfaces.VectorGenerator

amplitude(amp=None)
Amplitude is in dBm

Parameters amp (float) – If None, only gets

Returns output power amplitude

Return type (float)

frequency(freq=None)
Frequency is in Hertz. This does not take you out of list mode, if you are in it

Parameters freq (float) – If None, only gets

Returns center frequency

Return type (float)

enable(enaState=None)
Enabler for the entire output

Parameters enaState (bool) – If None, only gets

Returns is RF output enabled

Return type (bool)

modulationEnable(enaState=None)
Enabler for all modulation: data, noise, carrier

If this is False, yet device is enabled overall. Output will be a sinusoid

This is a global modulation switch, so:

modulationEnable(False)

is equivalent to:

carrierMod(False)
addNoise(False)
digiMod(False)

Parameters enaState (bool) – If None, only gets

Returns is global modulation enabled

Return type (bool)

addNoise(enaState=True, bandwidth=None, cnRatio=None)
Enabler for additive white gaussian noise modulations

3.1. lightlab package 121

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

Parameters

• enaState (bool, None) – If None, only sets parameters; does not change enable state

• bandwidth (float) – noise bandwidth in Hertz (typical = 1e6)

• cnRatio (float) – carrier-to-noise ratio in dB (typical = 10)

Returns is noise enabled

Return type (bool)

setPattern(bitArray)
Data pattern for digital modulation

Parameters bitArray (ndarray) – array that is boolean or binary 1/0

digiMod(enaState=True, symbRate=None, amExtinct=None)
Enabler for baseband data modulation

Data is derived from pattern.

Parameters

• enaState (bool, None) – if False, noise and RF modulations persist. If None, sets
parameters but no state change

• symbRate (float) – bit rate in Symbols/s (typical = 3e6)

• amExtinct (float) – on/off ratio for AM, in percentage (0-100). 100 is full extinction

Returns is digital modulation enabled

Return type (bool)

Todo: From DM, only AM implemented right now. Further possibilities for formatting are endless

Possibility for arbitrary IQ waveform saving/loading in the :BB:ARB menu

carrierMod(enaState=True, typMod=None, deviation=None, modFreq=None)
Enabler for modulations of the RF carrier

Parameters

• enaState (bool, None) – if False, noise and data modulations persist. If None, sets
parameters but no state change

• typMod (str) – what kind of modulation (of [‘am’, ‘pm’, ‘fm’]). Cannot be None when
enaState is True

• deviation (float, None) – amplitude of the modulation, typMod dependent

• modFreq (float, None) – frequency of the modulation in Hertz (typical = 100e3)

Returns is carrier modulation of typMod enabled

Return type (bool)

There are three kinds of modulation, and they affect the interpretation of deviation.

• typMod='am': depth (0–100) percent

• typMod='pm': phase (0–50) radians

• typMod='fm': frequency (0–16e6) Hertz

122 Chapter 3. API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

Only one type of modulation can be present at a time. enaState causes these effects:

• True: this type is enabled, other types are disabled

• False: all types are disabled

• None: sets parameters of this type, whether or not it is the one enabled

listEnable(enaState=True, freqs=None, amps=None, isSlave=False, dwell=None)
Sets up list mode.

If isSlave is True, dwell has no effect. Put the trigger signal into the INST TRIG port. If isSlave is False,
it steps automatically every dwell time.

If both freqs and amps are None, do nothing to list data. If one is None, get a constant value from the
frequency/amplitude methods. If either is a scalar, it will become a constant list, taking on the necessary
length. If both are non-scalars, they must be the same length.

Parameters

• enaState (bool) – on or off

• freqs (list) – list data for frequency, in Hz

• amps (list) – list data for power, in dBm

• isSlave (bool) – Step through the list every time INST TRIG sees an edge (True), or
every dwell time (False)

• dwell (float) – time to wait at each point, if untriggered

lightlab.equipment.lab_instruments.Tektronix_CSA8000_CAS module

Summary

Classes:

Tektronix_CSA8000_CAS Communication analyzer scope

Reference

class Tektronix_CSA8000_CAS(name=’The DSA scope’, address=None, **kwargs)
Bases: lightlab.equipment.lab_instruments.Tektronix_DSA8300_Oscope.
Tektronix_DSA8300_Oscope

Communication analyzer scope

Note: @LightwaveLab: Is this different from the DSA? Maybe the DSA was the old one that got retired, but
they are actually the same. . .

Not necessarily tested with the new abstract driver

Usage: Instrument: Oscilloscope

lightlab.equipment.lab_instruments.Tektronix_DPO4032_Oscope module

3.1. lightlab package 123

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

Summary

Classes:

Tektronix_DPO4032_Oscope Manual: https://www.imperial.ac.uk/media/
imperial-college/research-centres-and-groups/
centre-for-bio-inspired-technology/7293027.PDF

Reference

class Tektronix_DPO4032_Oscope(name=’The DPO scope’, address=None, **kwargs)
Bases: lightlab.equipment.lab_instruments.Tektronix_DPO4034_Oscope.
Tektronix_DPO4034_Oscope

Manual: https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/
centre-for-bio-inspired-technology/7293027.PDF

totalChans = 2

timebaseConfig(avgCnt=None, duration=None)
Timebase and acquisition configure

Parameters

• avgCnt (int) – averaging done by the scope

• duration (float) – time, in seconds, for data to be acquired

Returns (dict) The present values of all settings above

acquire(chans=None, timeout=None, **kwargs)
Get waveforms from the scope.

If chans is None, it won’t actually trigger, but it will configure.

If unspecified, the kwargs will be derived from the previous state of the scope. This is useful if you want
to play with it in lab while working with this code too.

Parameters

• chans (list) – which channels to record at the same time and return

• avgCnt (int) – number of averages. special behavior when it is 1

• duration (float) – window width in seconds

• position (float) – trigger delay

• nPts (int) – number of sample points

• timeout (float) – time to wait for averaging to complete in seconds If it is more than
a minute, it will do a test first

Returns recorded signals

Return type list[Waveform]

lightlab.equipment.lab_instruments.Tektronix_DPO4034_Oscope module

124 Chapter 3. API

https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/centre-for-bio-inspired-technology/7293027.PDF
https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/centre-for-bio-inspired-technology/7293027.PDF
https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/centre-for-bio-inspired-technology/7293027.PDF
https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/centre-for-bio-inspired-technology/7293027.PDF
https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/centre-for-bio-inspired-technology/7293027.PDF
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list

Lightlab Documentation, Release 1.1.0

Summary

Classes:

Tektronix_DPO4034_Oscope Slow DPO scope.

Reference

class Tektronix_DPO4034_Oscope(name=’The DPO scope’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.TekScopeAbstract.TekScopeAbstract

Slow DPO scope. See abstract driver for description

Manual

Usage: Instrument: Oscilloscope

instrument_category
alias of lightlab.laboratory.instruments.interfaces.Oscilloscope

totalChans = 4

wfmDb()
Transfers a bundle of waveforms representing a signal database. Sample mode only.

Configuration such as position, duration are unchanged, so use an acquire(None, . . .) call to set them up

Parameters

• chan (int) – currently this only works with one channel at a time

• nWfms (int) – how many waveforms to acquire through sampling

• untriggered (bool) – if false, temporarily puts scope in free run mode

Returns all waveforms acquired

Return type (FunctionBundle(Waveform))

lightlab.equipment.lab_instruments.Tektronix_DSA8300_Oscope module

Summary

Classes:

Tektronix_DSA8300_Oscope Sampling scope.

Reference

class Tektronix_DSA8300_Oscope(name=’The DSA scope’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.TekScopeAbstract.TekScopeAbstract

Sampling scope. See abstract driver for description

Manual

3.1. lightlab package 125

http://websrv.mece.ualberta.ca/electrowiki/images/8/8b/MSO4054_Programmer_Manual.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
http://www.tek.com/download?n=975655&f=190886&u=http%3A%2F%2Fdownload.tek.com%2Fsecure%2FDifferential-Channel-Alignment-Application-Online-Help.pdf%3Fnvb%3D20170404035703%26amp%3Bnva%3D20170404041203%26amp%3Btoken%3D0ccdfecc3859114d89c36

Lightlab Documentation, Release 1.1.0

Usage: Instrument: Oscilloscope

instrument_category
alias of lightlab.laboratory.instruments.interfaces.Oscilloscope

totalChans = 8

histogramStats(chan, nWfms=3, untriggered=False)
Samples for a bunch of waveforms. Instead of sending all of that data, It uses the scope histogram. It
returns the percentage within a given sigma width

Returns standard deviation in volts (ndarray): proportion of points within [1, 2, 3] stddevs of
mean

Return type (float)

lightlab.equipment.lab_instruments.Tektronix_PPG3202 module

Summary

Classes:

Tektronix_PPG3202 Python driver for Tektronix PPG 3202.

Reference

class Tektronix_PPG3202(name=’Pattern Generator’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.configurable.Configurable

Python driver for Tektronix PPG 3202.

Basic functionality includes setting all parameters on the main pannel and specifying data rate. Other function-
ality includes setting output data pattern on specifies channel.

Manual <https://www.tek.com/bit-error-rate-tester/patternpro-ppg-series-pattern-generator-manual/ppg1600-
ppg3000-ppg3200-0>

instrument_category
alias of lightlab.laboratory.instruments.interfaces.PatternGenerator

setDataRate(rate=None)
Set the data rate of the PPG. Data rate can only be in the range of 1.5 Gb/s to 32 Gb/s

setMainParam(chan=None, amp=None, offset=None, ptype=None)
One function to set all parameters on the main window

setClockDivider(div=None)

setDataMemory(chan=None, startAddr=None, bit=None, data=None)

setHexDataMemory(chan=None, startAddr=None, bit=None, Hdata=None)

channelOn(chan=None)

channelOff(chan=None)

getAmplitude(chan=None)

getOffset(chan=None)

126 Chapter 3. API

https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

getDataRate()

getPatternType(chan=None)

getClockDivider()

lightlab.equipment.lab_instruments.Tektronix_RSA6120B_RFSA module

Summary

Classes:

Tektronix_RSA6120B_RFSA TEKTRONIX RSA6120B, RF spectrum analyzer

Reference

class Tektronix_RSA6120B_RFSA(name=’The RF spectrum analyzer’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.configurable.Configurable

TEKTRONIX RSA6120B, RF spectrum analyzer

Manual

Usage: TODO

Fairly simple class for getting RF spectra. The RSA6120 has a lot of advanced functionality, like spectrograms,
which could be implemented later.

instrument_category
alias of lightlab.laboratory.instruments.interfaces.RFSpectrumAnalyzer

startup()

getMeasurements()

Returns tokens of currently active measurements

Return type (list[str])

setMeasurement(measType=’SPEC’, append=False)
Turns on a measurement type

If append is False, turns off all measurements except for the one specified

See manual for other measurement types.

run(doRun=True)
Continuous run

After transferring spectra remotely, the acquisition stops going continuously. Call this when you want to
run the display live. Useful for debugging when you are in lab.

sgramInit(freqReso=None, freqRange=None)

sgramTransfer(duration=1.0, nLines=100)
Transfers data that has already been taken. Typical usage:

3.1. lightlab package 127

http://www.giakova.com/siti/GIAKOVA/img/upload/Prodotti/file_1/RSA5000_MANUALE.pdf
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Lightlab Documentation, Release 1.1.0

self.sgramInit()
... << some activity >>
self.run(False)
self.spectrogram()

Currently only supports free running mode, so time is approximate. The accuracy of timing and consis-
tency of timing between lines is not guaranteed.

spectrum(freqReso=None, freqRange=None, typAvg=’none’, nAvg=None)
Acquires and transfers a spectrum.

Unspecified or None parameters will take on values used in previous calls, with the exception of typAvg –
you must explicitly ask to average each time.

Parameters

• freqReso (float, None) – frequency resolution (typical = 1e3 to 10e6)

• freqRange (array-like[float], None) – 2-element frequency range

• typAvg (str) – type of averaging (of [‘none’, ‘average’, ‘maxhold’, ‘minhold’, ‘av-
glog’])

• nAvg (int, None) – number of averages, if averaging

Returns power spectrum in dBm vs. Hz

Return type (lightlab.util.data.Spectrum)

lightlab.equipment.lab_instruments.Tektronix_TDS6154C_Oscope module

Summary

Classes:

Tektronix_TDS6154C_Oscope Real time scope.

Reference

class Tektronix_TDS6154C_Oscope(name=’The TDS scope’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver,
lightlab.equipment.abstract_drivers.TekScopeAbstract.TekScopeAbstract

Real time scope. See abstract driver for description.

Manual

Usage: Instrument: Oscilloscope

instrument_category
alias of lightlab.laboratory.instruments.interfaces.Oscilloscope

totalChans = 4

Summary

Exceptions:

128 Chapter 3. API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
http://www.tek.com/sites/tek.com/files/media/media/resources/55W_14873_9.pdf

Lightlab Documentation, Release 1.1.0

BuggyHardware Not all instruments behave as they are supposed to.

Data:

k str(object=’‘) -> str str(bytes_or_buffer[, encoding[, er-
rors]]) -> str

modname str(object=’‘) -> str str(bytes_or_buffer[, encoding[, er-
rors]]) -> str

mro list() -> new empty list list(iterable) -> new list initial-
ized from iterable’s items

Reference

exception BuggyHardware
Bases: Exception

Not all instruments behave as they are supposed to. This might be lab specific. atait is not sure exactly how to
deal with that.

lightlab.equipment.visa_bases package

Submodules:

lightlab.equipment.visa_bases.driver_base module

Summary

Classes:

InstrumentSessionBase Base class for Instrument sessions, to be inherited and
specialized by VISAObject and PrologixGPIBObject

TCPSocketConnection Opens a TCP socket connection, much like netcat.

Data:

CR str(object=’‘) -> str str(bytes_or_buffer[, encoding[, er-
rors]]) -> str

LF str(object=’‘) -> str str(bytes_or_buffer[, encoding[, er-
rors]]) -> str

Reference

class InstrumentSessionBase
Bases: abc.ABC

Base class for Instrument sessions, to be inherited and specialized by VISAObject and PrologixGPIBObject

spoll()

3.1. lightlab package 129

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/abc.html#abc.ABC

Lightlab Documentation, Release 1.1.0

LLO()

LOC()

open()

close()

write()

query()

wait()

clear()

query_raw_binary()

query_ascii_values(message, converter=’f’, separator=’, ’, container=<class ’list’>)
Taken from pvisa.

instrID()
Returns the *IDN? string

timeout

class TCPSocketConnection(ip_address, port, timeout=2, termination=’n’)
Bases: object

Opens a TCP socket connection, much like netcat.

Usage: s = TCPSocketConnection(‘socket-server.school.edu’, 1111) s.connect() # connects to socket and leaves
it open s.send(‘command’) # sends the command through the socket r = s.recv(1000) # receives a message
of up to 1000 bytes s.disconnect() # shuts down connection

Parameters

• ip_address (str) – hostname or ip address of the socket server

• port (int) – socket server’s port number

• timeout (float) – timeout in seconds for establishing socket connection to socket server,
default 2.

port = None
socket server’s port number

connect()
Connects to the socket and leaves the connection open. If already connected, does nothing.

Returns socket object.

disconnect()
If connected, disconnects and kills the socket.

connected()
Context manager for ensuring that the socket is connected while sending and receiving commands to
remote socket. This is safe to use everywhere, even if the socket is previously connected. It can also be
nested. This is useful to bundle multiple commands that you desire to be executed together in a single
socket connection, for example:

def query(self, query_msg, msg_length=2048):
with self.connected():

self._send(self._socket, query_msg)

(continues on next page)

130 Chapter 3. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

(continued from previous page)

recv = self._recv(self._socket, msg_length)
return recv

startup()

send(value)
Sends an ASCII string to the socket server. Auto-connects if necessary.

Parameters value (str) – value to be sent

recv(msg_length=2048)
Receives an ASCII string from the socket server. Auto-connects if necessary.

Parameters msg_length (int) – maximum message length.

query(query_msg, msg_length=2048)

lightlab.equipment.visa_bases.prologix_gpib module

Summary

Classes:

PrologixGPIBObject
param tempSess If True, the session is

opened and closed every time there is
a command

PrologixResourceManager Controls a Prologix GPIB-ETHERNET Con-
troller v1.2 manual: http://prologix.biz/downloads/
PrologixGpibEthernetManual.pdf

Reference

class PrologixResourceManager(ip_address, timeout=2)
Bases: lightlab.equipment.visa_bases.driver_base.TCPSocketConnection

Controls a Prologix GPIB-ETHERNET Controller v1.2 manual: http://prologix.biz/downloads/
PrologixGpibEthernetManual.pdf

Basic usage:

p = PrologixResourceManager('prologix.school.edu')

p.connect() # connects to socket and leaves it open
p.startup() # configures prologix to communicate via gpib
p.send('++addr 23') # talks to address 23
p.send('command value') # sends the command and does not expect to read anything
p.query('command') # sends a command but reads stuff back, this might hang if
→˓buffer is empty
p.disconnect()

The problem with the above is that if there is any error with startup, send or query, the disconnect method will
not be called. So we coded a decorator called connected, to be used as such:

3.1. lightlab package 131

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
http://prologix.biz/downloads/PrologixGpibEthernetManual.pdf
http://prologix.biz/downloads/PrologixGpibEthernetManual.pdf
http://prologix.biz/downloads/PrologixGpibEthernetManual.pdf
http://prologix.biz/downloads/PrologixGpibEthernetManual.pdf

Lightlab Documentation, Release 1.1.0

p = PrologixResourceManager('prologix.school.edu')

with p.connected():
p.startup()
p.send('++addr 23') # talks to address 23
p.send('command value') # sends the command and does not expect to read

→˓anything
p.query('command') # sends a command but reads stuff back

If we try to send a message without the decorator, then we should connect and disconnect right before.

p = PrologixResourceManager('prologix.school.edu')

p.send('++addr 23') # opens and close socket automatically

Warning: If a second socket is opened from the same computer while the first was online, the first socket
will stop responding and Prologix will send data to the just-opened socket.

Todo: Make this class a singleton to mitigate the issue above.

Parameters

• ip_address (str) – hostname or ip address of the Prologix controller

• timeout (float) – timeout in seconds for establishing socket connection to socket server,
default 2.

port = 1234
port that the Prologix GPIB-Ethernet controller listens to.

startup()
Sends the startup configuration to the controller. Just in case it was misconfigured.

query(query_msg, msg_length=2048)
Sends a query and receives a string from the controller. Auto-connects if necessary.

Args: query_msg (str): query message. msg_length (int): maximum message length. If the
received

message does not contain a ‘

‘, it triggers another socket recv command with the same message length.

class PrologixGPIBObject(address=None, tempSess=False)
Bases: lightlab.equipment.visa_bases.driver_base.InstrumentSessionBase

Parameters

• tempSess (bool) – If True, the session is opened and closed every time there is a com-
mand

• address (str) – The full visa address in the form: pro-
logix://prologix_ip_address/gpib_primary_address:gpib_secondary_address

spoll()
Return status byte of the instrument.

132 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Lightlab Documentation, Release 1.1.0

LLO()
This command disables front panel operation of the currently addressed instrument.

LOC()
This command enables front panel operation of the currently addressed instrument.

termination
Termination GPIB character. Valid options – ‘\r\n’, ‘\r’, ‘\n’, ‘’.

open()
Open connection with instrument. If tempSess is set to False, please remember to close after use.

close()
Closes the connection with the instrument. Side effect: disconnects prologix socket controller

write(writeStr)

query(queryStr, withTimeout=None)
Read the unmodified string sent from the instrument to the computer.

wait(bigMsTimeout=10000)

clear()
This command sends the Selected Device Clear (SDC) message to the currently specified GPIB address.

query_raw_binary(queryStr, withTimeout=None)
Read the unmodified string sent from the instrument to the computer. In contrast to query(), no termination
characters are stripped. Also no decoding.

timeout
This timeout is between the user and the instrument. For example, if we did a sweep that should take ~10
seconds but ends up taking longer, you can set the timeout to 20 seconds.

lightlab.equipment.visa_bases.visa_driver module

Summary

Exceptions:

IncompleteClass
InstrumentIOError

Classes:

DefaultDriver alias of lightlab.equipment.visa_bases.
visa_driver.VISAInstrumentDriver

DriverMeta Driver initializer returns an instrument in
instrument_category, not an instance of
the Driver itself, unless * instrument_category
is None * directInit=True is passed in

InstrumentSession This class is the interface between the higher levels of
lightlab instruments and the driver controlling the GPIB
line.

VISAInstrumentDriver Generic (but not abstract) class for an instrument.

3.1. lightlab package 133

Lightlab Documentation, Release 1.1.0

Reference

exception InstrumentIOError
Bases: RuntimeError

class InstrumentSession(address=None, tempSess=False)
Bases: lightlab.equipment.visa_bases.visa_driver._AttrGetter

This class is the interface between the higher levels of lightlab instruments and the driver controlling the GPIB
line. Its methods are specialized into either PrologixGPIBObject or VISAObject.

This was mainly done because the Prologix GPIB Ethernet controller is not VISA compatible and does not
provide a VISA interface.

If the address starts with ‘prologix://’, it will use PrologixGPIBObject’s methods, otherwise it will use VISAOb-
ject’s methods (relying on pyvisa).

Warning: Since this is a wrapper class to either PrologixGPIBObject

or VISAObject, avoid using super() in overloaded methods. (see this)

reinstantiate_session(address, tempSess)

open()

close()

exception IncompleteClass
Bases: Exception

class DriverMeta(name, bases, dct)
Bases: type

Driver initializer returns an instrument in instrument_category, not an instance of the Driver itself, unless

• instrument_category is None

• directInit=True is passed in

Also checks that the API is satistied at compile time, providing some early protection against bad drivers, like
this: test_badDriver().

Checks that it satisfies the API of its Instrument.

This occurs at compile-time

class VISAInstrumentDriver(name=’Default Driver’, address=None, **kwargs)
Bases: lightlab.equipment.visa_bases.visa_driver.InstrumentSession

Generic (but not abstract) class for an instrument. Initialize using the literal visa address

Contains a visa communication object.

instrument_category = None

startup()

open()

close()

DefaultDriver
alias of lightlab.equipment.visa_bases.visa_driver.VISAInstrumentDriver

134 Chapter 3. API

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://stackoverflow.com/questions/12047847/super-object-not-calling-getattr
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#type

Lightlab Documentation, Release 1.1.0

lightlab.equipment.visa_bases.visa_object module

Summary

Classes:

VISAObject Abstract class for something that communicates via
messages (GPIB/USB/Serial/TCPIP/etc.).

Data:

CR str(object=’‘) -> str str(bytes_or_buffer[, encoding[, er-
rors]]) -> str

LF str(object=’‘) -> str str(bytes_or_buffer[, encoding[, er-
rors]]) -> str

OPEN_RETRIES int(x=0) -> integer int(x, base=10) -> integer

Reference

class VISAObject(address=None, tempSess=False)
Bases: lightlab.equipment.visa_bases.driver_base.InstrumentSessionBase

Abstract class for something that communicates via messages (GPIB/USB/Serial/TCPIP/etc.). It handles
message-based sessions in a way that provides a notion of object permanence to the connection with a par-
ticular address.

It acts like a pyvisa message-based session, but it is not a subclass; it is a wrapper. It only contains one (at
at time). That means VISAObject can offer extra opening, closing, session management, and error reporting
features.

This class relies on pyvisa to work

Parameters

• tempSess (bool) – If True, the session is opened and closed every time there is a com-
mand

• address (str) – The full visa address

resMan = None

mbSession = None

open()
Open connection with 5 retries.

close()

write(writeStr)

query(queryStr, withTimeout=None)

instrID()
Returns the *IDN? string

timeout

wait(bigMsTimeout=10000)

3.1. lightlab package 135

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Lightlab Documentation, Release 1.1.0

LLO()

LOC()

clear()

query_raw_binary()

spoll()

termination

3.1.3 lightlab.laboratory package

The laboratory module facilitates the organization and documentation of instruments, experiments and devices. The
objects defined here are designed to be “hashable”, i.e., easy to store and share.

Submodules:

lightlab.laboratory.devices module

This module contains virtual tokens for optical and electronic devices.

lightlab.laboratory.experiments module

This module contains tokens for experiments that use devices and instruments. This is useful to keep track of what is
connected to what.

Summary

Classes:

Experiment Experiment base class.
MasterExperiment Does nothing except hold sub experiments to synchro-

nize them.

Reference

class Experiment(instruments=None, devices=None, **kwargs)
Bases: lightlab.laboratory.virtualization.Virtualizable

Experiment base class.

This class is intended to be inherited by the user.

Usage:

experiment = Experiment()
with experiment.asVirtual():

experiment.measure() # measure is a DualFunction

Quick tutorial on decorators:
with obj as foo:

(continues on next page)

136 Chapter 3. API

Lightlab Documentation, Release 1.1.0

(continued from previous page)

foo.something()

this is equivalent to
foo = obj.__enter__()
foo.something()
obj.__exit__()

lab

is_valid(reset=True)

valid

instruments = None

instruments_requirements = None

devices = None

validate_exprs = None

connections = None

name = None

startup()

global_hardware_warmup()

hardware_warmup()

hardware_cooldown()

asReal()
Wraps making self.virtual to False. Also does hardware warmup and cooldown

registerInstrument(instrument, host=None, bench=None)

registerInstruments(*instruments, host=None, bench=None)

registerConnection(connection)

registerConnections(*connections)

validate()

lock(key)

unlock()

display()

class MasterExperiment
Bases: lightlab.laboratory.virtualization.Virtualizable

Does nothing except hold sub experiments to synchronize them. This is purely a naming thing.

lightlab.laboratory.state module

This module contains classes responsible to maintain a record of the current state of the lab.

Users typically just have to import the variable lab.

3.1. lightlab package 137

Lightlab Documentation, Release 1.1.0

Warning: Developers: do not import lab anywhere inside the lightlab package. This will cause the deserializa-
tion of the JSON file before the definition of the classes of the objects serialized. If you want to make use of the
variable lab, import it like this:

import lightlab.laboratory.state as labstate

developer code
device = function_that_returns_device()
bench = labstate.lab.findBenchFromInstrument(device)

Summary

Classes:

LabState Represents the set of objects and connections present in
lab, with the ability to safely save and load to and from
a .json file.

Functions:

hash_sha256 Returns the hash of string encoded via the SHA-256 al-
gorithm from hashlib

init_module
patch_labstate This takes the loaded JSON version of labstate (old_lab)

and applies a patch to the current version of labstate.
timestamp_string Returns timestamp in iso format (e.g.

Data:

can_write bool(x) -> bool
lab

Reference

timestamp_string()
Returns timestamp in iso format (e.g. 2018-03-25T18:30:55.328389)

hash_sha256(string)
Returns the hash of string encoded via the SHA-256 algorithm from hashlib

class LabState(filename=None)
Bases: lightlab.laboratory.Hashable

Represents the set of objects and connections present in lab, with the ability to safely save and load to and from
a .json file.

instruments_dict
Dictionary of instruments, concatenated from lab.instruments.

hosts = None
list(Host) list of hosts

138 Chapter 3. API

Lightlab Documentation, Release 1.1.0

benches = None
list(Bench) list of benches

connections = None
list(dict(str -> str)) list of connections

devices = None
list(Device) list of devices

instruments = None
list(Instrument) list of instruments

updateHost(*hosts)
Updates hosts in the hosts list.

Checks the number of instrumentation_servers. There should be exactly one.

Parameters * (Host) – hosts

Raises

• RuntimeError – Raised if duplicate names are found.

• TypeError – Raised if host is not of type Host

updateBench(*benches)
Updates benches in the benches list.

Parameters * (Bench) – benches

Raises

• RuntimeError – Raised if duplicate names are found.

• TypeError – Raised if bench is not of type Bench

deleteInstrumentFromName(name)
Deletes an instrument by their name.

Example:

lab.deleteInstrumentFromName("Keithley2")

Parameters name (str) – Instrument name

insertInstrument(instrument)
Inserts instrument in labstate.

Parameters instrument (Instrument) – instrument to insert.

Raises

• RuntimeError – Raised if duplicate names are found.

• TypeError – Raised if instrument is not of type Instrument

insertDevice(device)
Inserts device in labstate.

Parameters device (Device) – device to insert.

Raises

• RuntimeError – Raised if duplicate names are found.

• TypeError – Raised if device is not of type Device

3.1. lightlab package 139

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#TypeError

Lightlab Documentation, Release 1.1.0

updateConnections(*connections)
Updates connections between instruments and devices.

A connection is a tuple with a pair of one-entry dictionaries, as such:

conn = ({instr1: port1}, {instr2: port2})

The code assumes that there can only be one connection per port. This method performs the following
action:

1. verifies that port is one of instr.ports. Otherwise raises a RuntimeError.

2. deletes any connection in lab.connections that has either {instr1: port1} or
{instr1: port1}, and logs the deleted connection as a warning.

3. adds new connection

Parameters connections (tuple(dict)) – connection to update

devices_dict
Dictionary of devices, concatenated from lab.devices.

Access with devices_dict[device.name]

Todo: Logs a warning if duplicate is found.

findBenchFromInstrument(instrument)
Returns the bench that contains the instrument.

This obviously assumes that one instrument can only be present in one bench.

findBenchFromDevice(device)
Returns the bench that contains the device.

This obviously assumes that one device can only be present in one bench.

findHostFromInstrument(instrument)
Returns the host that contains the instrument.

This obviously assumes that one instrument can only be present in one host.

classmethod loadState(filename=None, validateHash=True)
Loads a LabState object from a file.

It loads and instantiates a copy of every object serialized with lab.saveState(filename). The
objects are saved with jsonpickle, and must be hashable and contain no C-object references. For
convenience, lab objects are inherited from :class:‘lightlab.laboratory.Hashable.

By default, the sha256 hash is verified at import time to prevent instantiating objects from a corrupted file.

A file version is also compared to the code version. If a new version of this class is present, but your json
file is older, a RuntimeWarning is issued.

Todo: When importing older json files, know what to do to upgrade it without bugs.

Parameters

• filename (str or Path) – file to load from.

• validateHash (bool) – whether to check the hash, default True.

140 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

Raises

• RuntimeWarning – if file version is older than lightlab.

• RuntimeError – if file version is newer than lightlab.

• JSONDecodeError – if there is any problem decoding the .json file.

• JSONDecodeError – if the hash file inside the .json file does not match the computed
hash during import.

• OSError – if there is any problem loading the file.

filename
Filename used to serialize labstate.

saveState(fname=None, save_backup=True)
Saves the current lab, together with all its dependencies, to a JSON file.

But first, it checks whether the file has the same hash as the previously loaded one. If file is not found, skip
this check.

If the labstate was created from scratch, save with _saveState().

Parameters

• fname (str or Path) – file path to save

• save_backup (bool) – saves a backup just in case, defaults to True.

Raises OSError – if there is any problem saving the file.

init_module(module)

patch_labstate(from_version, old_lab)
This takes the loaded JSON version of labstate (old_lab) and applies a patch to the current version of labstate.

lightlab.laboratory.virtualization module

Provides a framework for making virtual instruments that present the same interface and simulated behavior as the real
ones. Allows a similar thing with functions, methods, and experiments.

Dualization is a way of tying together a real instrument with its virtual counterpart. This is a powerful way to
test procedures in a virtual environment before flipping the switch to reality. This is documented in tests.
test_virtualization.

virtualOnly
bool – If virtualOnly is True, any “with” statements using asReal will just skip the block. When not using a
context manager (i.e. exp.virtual = False), it will eventually produce a VirtualizationError.

Summary

Exceptions:

VirtualizationError

Classes:

3.1. lightlab package 141

https://docs.python.org/3/library/exceptions.html#RuntimeWarning
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#OSError

Lightlab Documentation, Release 1.1.0

DualFunction This class implements a descriptor for a function whose
behavior depends on an instance’s variable.

DualInstrument Holds a real instrument and a virtual instrument.
DualMethod This differs from DualFunction because it exists outside

of the object instance.
VirtualInstrument Just a placeholder for future functionality
Virtualizable Virtualizable means that it can switch between two

states, usually corresponding to a real-life situation and
a virtual/simulated situation.

Data:

virtualOnly bool(x) -> bool

Reference

class Virtualizable
Bases: object

Virtualizable means that it can switch between two states, usually corresponding to a real-life situation and a
virtual/simulated situation.

The attribute synced refers to other Virtualizables whose states will be synchronized with this one

synced = None

synchronize(*newVirtualizables)
Adds another object that this one will put in the same virtual state as itself.

Parameters newVirtualizables (*args) – Other virtualizable things

virtual
Returns the virtual state of this object

asVirtual()
Temporarily puts this and synchronized in a virtual state. The state is reset at the end of the with block.

Example usage:

exp = Virtualizable()
with exp.asVirtual():

print(exp.virtual) # prints True
print(exp.virtual) # VirtualizationError

asReal()
Temporarily puts this and synchronized in a virtual state. The state is reset at the end of the with block.

If virtualOnly is True, it will skip the block without error

Example usage:

exp = Virtualizable()
with exp.asVirtual():

print(exp.virtual) # prints False
print(exp.virtual) # VirtualizationError

142 Chapter 3. API

https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

class VirtualInstrument
Bases: object

Just a placeholder for future functionality

asVirtual()
do nothing

class DualInstrument(real_obj=None, virt_obj=None)
Bases: lightlab.laboratory.virtualization.Virtualizable

Holds a real instrument and a virtual instrument. Feeds through __getattribute__ and __setattr__:
very powerful. It basically appears as one or the other instrument, as determined by whether it is in virtual or
real mode.

This is especially useful if you have an instrument stored in the JSON labstate, and would then like to virtualize
it in your notebook. In that case, it does not reinitialize the driver.

This is documented in tests.test_virtualization.

isinstance() and .__class__ will tell you the underlying instrument type type() will give you the
DualInstrument subclass:

dual = DualInstrument(realOne, virtOne)
with dual.asReal():

isinstance(dual, type(realOne)) # True
dual.meth is realOne.meth # True

isinstance(dual, type(realOne)) # False

Parameters

• real_obj (Instrument) – the real reference

• virt_obj (VirtualInstrument) – the virtual reference

real_obj = None

virt_obj = None

virtual
Returns the virtual state of this object

class DualFunction(virtual_function=None, hardware_function=None, doc=None)
Bases: object

This class implements a descriptor for a function whose behavior depends on an instance’s variable. This was
inspired by core python’s property descriptor.

Example usage:

@DualFunction
def measure(self, *args, **kwargs):

use a model to simulate outputs based on args and kwargs and self.
return simulated_output

@measure.hardware
def measure(self, *args, **kwargs):

collect data from hardware using args and kwargs and self.
return output

The “virtual” function will be called if self.virtual equals True, otherwise the hardware decorated function
will be called instead.

3.1. lightlab package 143

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

hardware(func)

virtual(func)

class DualMethod(dualInstrument=None, virtual_function=None, hardware_function=None,
doc=None)

Bases: object

This differs from DualFunction because it exists outside of the object instance. Instead it takes the object when
initializing.

It uses __call__ instead of __get__ because it is its own object

Todo: The naming for DualFunction and DualMethod are backwards. Will break notebooks when changed.

exception VirtualizationError
Bases: RuntimeError

Subpackages:

lightlab.laboratory.instruments package

The Instruments module is divided into two: bases and interfaces.

All classes are imported into this namespace.

Submodules:

lightlab.laboratory.instruments.bases module

This module provides an interface for instruments, hosts and benches in the lab.

Summary

Exceptions:

NotFoundError Error thrown when instrument is not found

Classes:

Bench Represents an experiment bench for the purpose of fa-
cilitating its location in lab.

Device Represents a device in lab.
Host Computer host, from which GPIB/VISA commands are

issued.
Instrument Represents an instrument in lab.
LocalHost
MockInstrument

144 Chapter 3. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#RuntimeError

Lightlab Documentation, Release 1.1.0

Reference

class Host(name=’Unnamed Host’, hostname=None, **kwargs)
Bases: lightlab.laboratory.Node

Computer host, from which GPIB/VISA commands are issued.

mac_address = None

os = 'linux-ubuntu'

hostname = None

name

instruments

isLive()
Pings the system and returns if it is alive.

gpib_port_to_address(port, board=0)

Parameters

• port (int) – The port on the GPIB bus of this host

• board (int) – For hosts with multiple GPIB busses

Returns the address that can be used in an initializer

Return type (str)

list_resources_info(use_cached=True)
Executes a query to the NI Visa Resource manager and returns a list of instruments connected to it.

Parameters use_cached (bool) – query only if not cached, default True

Returns list of pyvisa.highlevel.ResourceInfo named tuples.

Return type list

list_gpib_resources_info(use_cached=True)
Like list_resources_info(), but only returns gpib resources.

Parameters use_cached (bool) – query only if not cached, default True.

Returns list of pyvisa.highlevel.ResourceInfo named tuples.

Return type (list)

get_all_gpib_id(use_cached=True)
Queries the host for all connected GPIB instruments, and queries their identities with instrID().

Warning: This might cause your instrument to lock into remote mode.

Parameters use_cached (bool) – query only if not cached, default True

Returns dictionary with gpib addresses as keys and identity strings as values.

Return type dict

findGpibAddressById(id_string_search, use_cached=True)
Finds a gpib address using get_all_gpib_id(), given an identity string.

Parameters

• id_string_search (str) – identity string

• use_cached (bool) – query only if not cached, default True

3.1. lightlab package 145

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

Returns address if found.

Return type str

Raises NotFoundError – If the instrument is not found.

addInstrument(*instruments)
Adds an instrument to lab.instruments if it is not already present.

Parameters *instruments (Instrument) – instruments

removeInstrument(*instruments)
Disconnects the instrument from the host

Parameters *instruments (Instrument) – instruments

Todo: Remove all connections

checkInstrumentsLive()
Checks whether all instruments are “live”.

Instrument status is checked with the Instrument.isLive() method

Returns True if all instruments are live, False otherwise

Return type (bool)

display()
Displays the host’s instrument table in a nice format.

class LocalHost(name=None)
Bases: lightlab.laboratory.instruments.bases.Host

isLive()
Pings the system and returns if it is alive.

class Bench(name, *args, **kwargs)
Bases: lightlab.laboratory.Node

Represents an experiment bench for the purpose of facilitating its location in lab.

name = None

instruments

devices

addInstrument(*instruments)
Adds an instrument to lab.instruments if it is not already present and connects to the host.

Parameters *instruments (Instrument) – instruments

removeInstrument(*instruments)
Detaches the instrument from the bench.

Parameters *instruments (Instrument) – instruments

Todo: Remove all connections

addDevice(*devices)
Adds a device to lab.devices if it is not already present and places it in the bench.

Parameters *devices (Device) – devices

146 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

removeDevice(*devices)
Detaches the device from the bench.

Parameters *devices (Device) – devices

Todo: Remove all connections

display()
Displays the bench’s table in a nice format.

class Instrument(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.Node

Represents an instrument in lab.

This class stores information about instruments, for the purpose of facilitating verifying whether it is connected
to the correct devices.

Driver feedthrough Methods, properties, and even regular attributes that are in essential_attributes
of the class will get/set/call through to the driver object.

Do not instantiate directly Calling a VISAInstrumentDriver class will return an Instrument object

Short example:

osa = Apex_AP2440A_OSA(name='foo', address='NULL')
osa.spectrum()

Long example Instrument configuration

Detailed testing test_driver_init()

essentialMethods = ['startup']
list of methods to be fed through the driver

essentialProperties = []
list of properties to be fed through the driver

optionalAttributes = []
list of optional attributes to be fed through the driver

ports = None
list(str) Port names of instruments. To be used with labstate connections.

address = None
Complete Visa address of the instrument (e.g. visa://hostname/GPIB0::1::INSTR)

implementedOptionals

hardware_warmup()
Called before the beginning of an experiment.

Typical warmup procedures include RESET gpib commands.

hardware_cooldown()
Called after the end of an experiment.

Typical cooldown procedures include laser turn-off, or orderly wind-down of current etc.

warmedUp()
A context manager that warms up and cools down in a “with” block

3.1. lightlab package 147

Lightlab Documentation, Release 1.1.0

Usage:

with instr.warmedUp() as instr: # warms up instrument
instr.doStuff()
raise Exception("Interrupting experiment")

cools down instrument, even in the event of exception

driver_class
Class of the actual equipment driver (from lightlab.equipment.lab_instruments)

This way the object knows how to instantiate a driver instance from the labstate.

driver_object
Instance of the equipment driver.

driver
Alias of driver_object().

bench
Property that only accepts <class ‘lightlab.laboratory.instruments.bases.Bench’> values

host
Property that only accepts <class ‘lightlab.laboratory.instruments.bases.Host’> values

name
(property) Instrument name (can only set during initialization)

id_string
The id_string should match the value returned by self.driver.instrID(), and is checked by the
command self.isLive() in order to authenticate that the intrument in that address is the intended
one.

display()
Displays the instrument’s info table in a nice format.

isLive()
Attempts VISA connection to instrument, and checks whether instrID() matches id_string.

Produces a warning if it is live but the id_string is wrong.

Returns True if “live”, False otherwise.

Return type (bool)

connectHost(new_host)
Sets/changes instrument’s host.

Equivalent to self.host = new_host

placeBench(new_bench)
Sets/changes instrument’s bench.

Equivalent to self.bench = new_bench

class MockInstrument(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

exception NotFoundError
Bases: RuntimeError

Error thrown when instrument is not found

class Device(name, **kwargs)
Bases: lightlab.laboratory.Node

148 Chapter 3. API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError

Lightlab Documentation, Release 1.1.0

Represents a device in lab. Only useful for documenting the experiment.

Todo: Add equality function

name = None
device name

ports = None
list(str) port names

bench
Property that only accepts <class ‘lightlab.laboratory.instruments.bases.Bench’> values

display()
Displays the device’s info table in a nice format.

lightlab.laboratory.instruments.interfaces module

This module defines the essential interfaces for each kind of instrument.

Todo: Document every interface.

Summary

Classes:

ArduinoInstrument Usage: TODO
Clock Usage: Instrument: Clock
CurrentSource Deprecated/Future
DSAOscilloscope Usage: Instrument: Oscilloscope
FunctionGenerator Usage: Instrument: FunctionGenerator
Keithley Usage: Instrument: Keithley and SourceMeter
LaserSource Usage: Instrument: LaserSource
NICurrentSource Usage: Instrument: CurrentSource
NetworkAnalyzer Usage: Instrument: NetworkAnalyzer
OpticalSpectrumAnalyzer Usage: Instrument: OpticalSpectrumAnalyzer
Oscilloscope Usage: Instrument: Oscilloscope
PatternGenerator
PowerMeter Usage: Instrument: PowerMeter
PulsePatternGenerator Usage: Instrument: PulsePatternGenerator
RFSpectrumAnalyzer Usage: TODO
SourceMeter Usage: Instrument: Keithley and SourceMeter
VariableAttenuator Usage: Instrument: VariableOpticalAttenuator
VectorGenerator Todo: Usage example

Reference

class PowerMeter(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

3.1. lightlab package 149

Lightlab Documentation, Release 1.1.0

Usage: Instrument: PowerMeter

essentialMethods = ['startup', 'powerDbm', 'powerLin']

class SourceMeter(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: Instrument: Keithley and SourceMeter

essentialMethods = ['startup', 'setCurrent', 'getCurrent', 'measVoltage', 'setProtectionVoltage', 'protectionVoltage', 'setProtectionCurrent', 'protectionCurrent', 'enable']

hardware_warmup()
Called before the beginning of an experiment.

Typical warmup procedures include RESET gpib commands.

hardware_cooldown()
Called after the end of an experiment.

Typical cooldown procedures include laser turn-off, or orderly wind-down of current etc.

class Keithley(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.interfaces.SourceMeter

Usage: Instrument: Keithley and SourceMeter

essentialMethods = ['startup', 'setCurrent', 'getCurrent', 'measVoltage', 'setProtectionVoltage', 'protectionVoltage', 'setProtectionCurrent', 'protectionCurrent', 'enable', 'setCurrentMode', 'setVoltageMode', 'setVoltage', 'getVoltage', 'measCurrent']

class VectorGenerator(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

Todo: Usage example

essentialMethods = ['startup', 'amplitude', 'frequency', 'enable', 'modulationEnable', 'addNoise', 'setPattern', 'digiMod', 'carrierMod', 'listEnable']

class Clock(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: Instrument: Clock

essentialMethods = ['startup', 'enable', 'frequency']

optionalAttributes = ['amplitude', 'sweepSetup', 'sweepEnable']

class NICurrentSource(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: Instrument: CurrentSource

essentialMethods = ['startup', 'setChannelTuning', 'getChannelTuning', 'off']

class CurrentSource(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

Deprecated/Future

essentialMethods = ['startup', 'setChannelTuning', 'getChannelTuning', 'off']

class FunctionGenerator(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: Instrument: FunctionGenerator

essentialMethods = ['startup', 'frequency', 'waveform', 'amplAndOffs', 'amplitudeRange', 'duty', 'enable']

optionalAttributes = ['setArbitraryWaveform']

150 Chapter 3. API

Lightlab Documentation, Release 1.1.0

class LaserSource(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: Instrument: LaserSource

essentialMethods = ['startup', 'setChannelEnable', 'getChannelEnable', 'setChannelWls', 'getChannelWls', 'setChannelPowers', 'getChannelPowers', 'getAsSpectrum', 'off', 'allOn']

essentialProperties = ['enableState', 'wls', 'powers']

optionalAttributes = ['wlRanges', 'allOff']

class OpticalSpectrumAnalyzer(name=’Unnamed Instrument’, id_string=None, address=None,
**kwargs)

Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: Instrument: OpticalSpectrumAnalyzer

essentialMethods = ['startup', 'spectrum']

essentialProperties = ['wlRange']

hardware_warmup()
Called before the beginning of an experiment.

Typical warmup procedures include RESET gpib commands.

class Oscilloscope(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: Instrument: Oscilloscope

essentialMethods = ['startup', 'acquire', 'wfmDb', 'run']

optionalAttributes = ['histogramStats']

hardware_cooldown()
Keep it running continuously in case you are in lab and want to watch

class DSAOscilloscope(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.interfaces.Oscilloscope

Usage: Instrument: Oscilloscope

essentialMethods = ['startup', 'acquire', 'wfmDb', 'run', 'histogramStats']

class PulsePatternGenerator(name=’Unnamed Instrument’, id_string=None, address=None,
**kwargs)

Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: Instrument: PulsePatternGenerator

essentialMethods = ['startup', 'setPrbs', 'setPattern', 'getPattern', 'on', 'syncSource', 'amplAndOffs']

class RFSpectrumAnalyzer(name=’Unnamed Instrument’, id_string=None, address=None,
**kwargs)

Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: TODO

essentialMethods = ['startup', 'getMeasurements', 'setMeasurement', 'run', 'sgramInit', 'sgramTransfer', 'spectrum']

class VariableAttenuator(name=’Unnamed Instrument’, id_string=None, address=None,
**kwargs)

Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: Instrument: VariableOpticalAttenuator

essentialMethods = ['startup', 'on', 'off']

3.1. lightlab package 151

Lightlab Documentation, Release 1.1.0

essentialProperties = ['attenDB', 'attenLin', 'wavelength', 'calibration']

class NetworkAnalyzer(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: Instrument: NetworkAnalyzer

essentialMethods = ['startup', 'amplitude', 'frequency', 'enable', 'run', 'sweepSetup', 'sweepEnable', 'triggerSetup', 'getSwpDuration', 'measurementSetup', 'spectrum', 'multiSpectra']

class ArduinoInstrument(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

Usage: TODO

essentialMethods = ['startup', 'write', 'query']

class PatternGenerator(name=’Unnamed Instrument’, id_string=None, address=None, **kwargs)
Bases: lightlab.laboratory.instruments.bases.Instrument

essentialMethods = ['startup', 'setDataRate', 'setMainParam', 'setDataMemory', 'setHexDataMemory', 'setClockDivider', 'channelOn', 'channelOff', 'getAmplitude', 'getOffset', 'getDataRate', 'getPatternType', 'getClockDivider']

Summary

Classes:

FrozenDict Don’t forget the docstrings!!
Hashable Hashable class to be used with jsonpickle’s module.
NamedList Object list that enforces that there are only one ob-

ject.name in the list.
Node Node is a token of an object that exists in a laboratory.
TypedList Object list that enforces that there are only one ob-

ject.name in the list and that they belong to a certain
class (obj_type).

Functions:

typed_property Property that only accepts instances of a class and stores
the contents in self.name

Reference

class FrozenDict(data)
Bases: collections.abc.Mapping

Don’t forget the docstrings!!

class Hashable(**kwargs)
Bases: object

Hashable class to be used with jsonpickle’s module. Rationale: This is a fancy way to do self.__dict__
== other.__dict__. That line fails when there are circular references within the __dict__. Hashable
solves that.

By default, every key-value in the initializer will become instance variables. E.g. Hashable(a=1).a == 1

No instance variables starting with “__” will be serialized.

context = <MagicMock name='mock.Pickler()' id='140411888182440'>

152 Chapter 3. API

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

class Node(**kwargs)
Bases: lightlab.laboratory.Hashable

Node is a token of an object that exists in a laboratory. For example, subclasses are:

• a Device

• a Host

• a Bench

• an Instrument

bench = None

placeBench(new_bench)

typed_property(type_obj, name)
Property that only accepts instances of a class and stores the contents in self.name

class NamedList(*args, read_only=False)
Bases: collections.abc.MutableSequence, lightlab.laboratory.Hashable

Object list that enforces that there are only one object.name in the list.

read_only = False

dict

values

keys

items()

check(value)

check_presence(name)

insert(index, value)
S.insert(index, value) – insert value before index

class TypedList(obj_type, *args, read_only=False, **kwargs)
Bases: lightlab.laboratory.NamedList

Object list that enforces that there are only one object.name in the list and that they belong to a certain class
(obj_type).

check(value)

3.1.4 lightlab.util package

Submodules:

lightlab.util.characterize module

Timing is pretty important. These functions monitor behavior in various ways with timing considered. Included is
strobeTest which sweeps the delay between actuate and sense, and monitorVariable for drift

3.1. lightlab package 153

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSequence

Lightlab Documentation, Release 1.1.0

Summary

Functions:

monitorVariable Monitors some process over time.
strobeTest Looks at a sense variable at different delays after calling

an actuate function.
sweptStrobe Takes in a NdSweeper and looks at the effect of delaying

between actuation from measurement.

Reference

strobeTest(fActuate, fSense, fReset=None, nPts=10, maxDelay=1, visualize=True)
Looks at a sense variable at different delays after calling an actuate function. Good for determining the time
needed to wait for settling. Calls each function once per delay point to construct a picture like the strobe
experiment, or a sampling scope

Parameters

• fActuate (function) – no arguments, no return. Called first.

• fSense (function) – no arguments, returns a scalar or np.array. Called after a given
delay

• fReset (function) – no arguments, no return. Called after the trial unless None. Usu-
ally of the same form as fActuate

Returns fSense values vs. delay

Return type (FunctionBundle)

sweptStrobe(varSwp, resetArg, nPts=10, maxDelay=1)
Takes in a NdSweeper and looks at the effect of delaying between actuation from measurement. Does the
gathering.

Starts by taking start and end baselines, for ease of visualization.

Parameters

• varSwp (NdSweeper) – the original, with 1-d actuation, any measurements, any parsers

• resetArg (scalar) – argument passed to varSwp’s actuate procedure to reset and equi-
librate

• nPts (int) – number of strobe points

• maxDelay (float) – in seconds, delay of strobe. Also the time to soak on reset

Returns the strobe sweep, with accessible data. It can be regathered if needed.

Return type (NdSweeper)

Todo: It would be nice to provide timeconstant analysis, perhaps by looking at 50%, or by fitting an exponential

monitorVariable(fValue, sleepSec=0, nReps=100, plotEvery=1)
Monitors some process over time. Good for observing drift.

Parameters

154 Chapter 3. API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

• valueFun (function) – called at each timestep with no arguments. Must return a scalar
or a 1-D np.array

• sleepSec (scalar) – time in seconds to sleep between calls

lightlab.util.config module

Summary

Exceptions:

InvalidOption
InvalidSection

Functions:

config_main
config_save Save config to a file.
get_config
get_config_param
parse_param
print_config_param
reset_config_param
set_config_param
validate_param
write_default_config

Data:

default_config dict() -> new empty dictionary dict(mapping) -> new
dictionary initialized from a mapping object’s (key,
value) pairs dict(iterable) -> new dictionary initialized
as if via: d = {} for k, v in iterable: d[k] = v
dict(**kwargs) -> new dictionary initialized with the
name=value pairs in the keyword argument list.For ex-
ample: dict(one=1, two=2).

Reference

write_default_config()

get_config()

parse_param(param)

exception InvalidSection
Bases: RuntimeError

exception InvalidOption
Bases: RuntimeError

validate_param(section, option)

3.1. lightlab package 155

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Lightlab Documentation, Release 1.1.0

get_config_param(param)

print_config_param(param)

set_config_param(param, value)

reset_config_param(param)

config_save(config, omit_default=True)
Save config to a file. Omits default values if omit_default is True.

config_main(args)

lightlab.util.gitpath module

All credit goes to https://github.com/MaxNoe/python-gitpath

Summary

Functions:

abspath returns the absolute path for a path given relative to the
root of the git repository

Reference

root
returns the absolute path of the repository root

abspath(relpath)
returns the absolute path for a path given relative to the root of the git repository

lightlab.util.measprocessing module

Useful stuff having to do with measurement processing. For example, if you want to set up a spectrum transmission
baseline, or a weight functional basis Generally, these states are not device states, but could change from day to day

Summary

Classes:

SpectrumMeasurementAssistant Class for preprocessing measured spectra Calculates
background spectra by 1) smoothing, 2) tuning/splicing,
and 3) peak nulling Also handles resonance finding
(This could move to a separate manager or external
function) Interfaces directly with OSA.

156 Chapter 3. API

https://github.com/MaxNoe/python-gitpath

Lightlab Documentation, Release 1.1.0

Reference

class SpectrumMeasurementAssistant(nChan=1, arePeaks=False, osaRef=None)
Bases: object

Class for preprocessing measured spectra Calculates background spectra by 1) smoothing, 2) tuning/splicing,
and 3) peak nulling Also handles resonance finding (This could move to a separate manager or external function)
Interfaces directly with OSA. It DOES NOT set tuning states.

useBgs = ['tuned', 'smoothed', 'const']

bgSmoothDefault = 2.0

rawSpect(avgCnt=1)

fgSpect(avgCnt=1, raw=None, bgType=None)
Returns the current spectrum with background removed.

Also plots so you can see what’s going on, if visualize mode was specified

If raw is specified, does not sweep, just removes background

resonances(spect=None, avgCnt=1)
Returns the current wavelengths of detected peaks in order sorted by wavelength. Uses the simple find-
Peaks function, but it could later use a convolutive peak finder for more accuracy. :param spect: if this is
specified, then a new spectrum will not be taken

killResonances(spect=None, avgCnt=1, fwhmsAround=3.0)

fgResPlot(spect=None, axis=None, avgCnt=1)
Takes a foreground spectrum, plots it and its peaks. Currently the axis input is unused.

setBgConst(raw=None)
Makes a background the maximum transmission observed

setBgSmoothed(raw=None, smoothNm=None)
Attempts to find background using a low-pass filter. Does not return. Stores results in the assistant vari-
ables.

setBgTuned(base, displaced)
Insert the pieces of the displaced spectrum into where the peaks are It is assumed that these spectra were
taken with this object’s fgSpect method

setBgNulled(filtShapes, avgCnt=3)
Uses the peak shape information to null out resonances This gives the best estimate of background INDE-
PENDENT of the tuning state. It is assumed that the fine background taken by tuning is present, and the
filter shapes were taken with that spect should be a foreground spect, but be careful when it is also derived
from bgNulled

getBgSpect(bgType=None)

lightlab.util.plot module

Summary

Classes:

DynamicLine A line that can refresh when called

Functions:

3.1. lightlab package 157

https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

plotCovEllipse Plots an ellipse enclosing volume based on the specified
covariance matrix (cov) and location (pos).

Reference

class DynamicLine(formatStr=’b-’, existing=None, geometry=[(0, 0), (4, 4)])
Bases: object

A line that can refresh when called

Parameters

• formatStr (str) – plotting line format

• existing (Figure/DynamicLine) – reference to an existing plot to which this Dy-
namicLine instance will be added

• geometry (list[Tuple,Tuple]) – a 2-element list of 2-tuples of bottom-left (pixels)
and width-height (inches)

refresh(xdata, ydata)
Refresh the data displayed in the plot

Parameters

• xdata (array) – X data

• ydata (array) – Y data

close()
Close the figure window.

Further calls to refresh() will cause an error

plotCovEllipse(cov, pos, volume=0.5, ax=None, **kwargs)
Plots an ellipse enclosing volume based on the specified covariance matrix (cov) and location (pos). Additional
keyword arguments are passed on to the ellipse patch artist.

Parameters

• cov – The 2x2 covariance matrix to base the ellipse on

• pos – The location of the center of the ellipse. Expects a 2-element sequence of [x0, y0].

• volume – The volume inside the ellipse; defaults to 0.5

• ax – The axis that the ellipse will be plotted on. Defaults to the current axis.

• kwargs – passed to Ellipse plotter

lightlab.util.search module

Searching with actuate-measure functions, usually around peaks and monotonic functions

Summary

Exceptions:

158 Chapter 3. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Lightlab Documentation, Release 1.1.0

SearchRangeError The first argument is direction, the second is a best guess

Functions:

binarySearch Gives the x where evalPointFun(x) ==
targetY, approximately.

bracketSearch Searches outwards until it finds two X values whose Y
values are above and below the targetY.

doesMFbracket
peakSearch Returns the optimal input that gives you the peak, and

the peak value
plotAfterPointMeasurement This mutates trackerMF

Reference

exception SearchRangeError
Bases: lightlab.util.io.errors.RangeError

The first argument is direction, the second is a best guess

plotAfterPointMeasurement(trackerMF, yTarget=None)
This mutates trackerMF

Parameters

• trackerMF (MeasuredFunction) – function that will be plotted

• yTarget (float) – plotted as dashed line if not None

peakSearch(evalPointFun, startBounds, nSwarm=3, xTol=0.0, yTol=0.0, livePlot=False)
Returns the optimal input that gives you the peak, and the peak value

You must set either xTol or yTol. Be careful with yTol! It is best used with a big swarm. It does not guarantee
that you are that close to peak, just that the swarm is that flat

This algorithm is a modified swarm that is robust to outliers, sometimes. Each iteration, it takes
<nSwarm> measurements and looks at the best (highest). The update is calculated by shrinking
the swarm around the index of the best value. It does not compare between iterations: that makes it robust
to one-time outliers. It attributes weight only by order of y values in an iteration, not the value between
iterations or the magnitude of differences between y’s within an iteration

Not designed to differentiate global vs. local maxima

Parameters

• evalPointFun (function) – y=f(x) one argument, one return. The function that we
want to find the peak of

• startBounds (list, ndarray) – minimum and maximum x values that bracket the
peak of interest

• nSwarm (int) – number of evaluations per iteration. Use more if it’s a narrow peak in a
big bounding area

• xTol (float) – if the swarm x’s fall within this range, search returns successfully

• yTol (float) – if the swarm y’s fall within this range, search returns successfully

• livePlot (bool) – for notebook plotting

3.1. lightlab package 159

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

Returns best (x,y) point of the peak

Return type (float, float)

doesMFbracket(targetY, twoPointMF)

bracketSearch(evalPointFun, targetY, startBounds, xTol, hardConstrain=False, livePlot=False)
Searches outwards until it finds two X values whose Y values are above and below the targetY.

Stop conditions

• brackets it: returns new bracketing x values

• step decreases until below xTol: raises RangeError

• 30 iterations: raises RangeError

Parameters

• evalPointFun (function) – y=f(x) one argument, one return. The function that we
want to find the target Y value of

• startBounds (list, ndarray) – x values that usually do not bracket the value of
interest

• xTol (float) – if domain shifts become less than this, raises RangeError

• hardConstrain (bool, list) – If list, will stay within those

• livePlot (bool) – for notebook plotting

Returns the bracketing range

Return type ([float, float])

binarySearch(evalPointFun, targetY, startBounds, hardConstrain=False, xTol=0, yTol=0, live-
Plot=False)

Gives the x where evalPointFun(x) == targetY, approximately. The final call to evalPointFun will be
of this value, so no need to call it again, if your goal is to set to the target.

xTol and yTol are OR-ed conditions. If one is satisfied, it will terminate successfully. You must specify at least
one.

Assumes that the function is monotonic in any direction It often works when there is a peak inside the
startBounds, although not always.

Parameters

• evalPointFun (function) – y=f(x) one argument, one return. The function that we
want to find the target Y value of

• startBounds (list, ndarray) – minimum and maximum x values that bracket the
peak of interest

• hardConstrain (bool, list) – if not True, will do a bracketSearch. If list, will stay
within those

• xTol (float) – if domain shifts become less than this, terminates successfully

• yTol (float) – if range shifts become less than this, terminates successfully

• livePlot (bool) – for notebook plotting

Returns the optimal X value

Return type (float)

160 Chapter 3. API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

lightlab.util.sweep module

Generalized sweep classes

Summary

Classes:

Actuation
CommandControlSweeper Generic command-control sweep for evaluating a con-

troller.
NdSweeper Generic sweeper.
Sweeper

Functions:

assertValidPlotType
availablePlots Filter by dims and swpType
loadPickle
plotCmdCtrl sweepData should have ALL the command weights

specified
savePickle
simpleSweep Basic sweep in one dimension, without function keys,

parsing, or plotting.

Data:

hArrow
hCurves
hEllipse
interAx
pTypes dict() -> new empty dictionary dict(mapping) -> new

dictionary initialized from a mapping object’s (key,
value) pairs dict(iterable) -> new dictionary initialized
as if via: d = {} for k, v in iterable: d[k] = v
dict(**kwargs) -> new dictionary initialized with the
name=value pairs in the keyword argument list.For ex-
ample: dict(one=1, two=2).

Reference

savePickle(savefile, data, compress=True)

loadPickle(savefile)

class Sweeper
Bases: object

plotOptions = None

monitorOptions = None

3.1. lightlab package 161

https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

gather()

save(savefile=None)
Save data only

Parameters savefile (str/Path) – file to save

load(savefile=None)
This is basically make it so that gather() and load() have the same effect.

It does not keep actuation or measurement members, only whatever was put in self.data

Parameters savefile (str/Path) – file to load

setPlotOptions(**kwargs)

Valid options for NdSweeper

• plType

• xKey

• yKey

• axArr

• cmap-surf

• cmap-curves

Valid options for CommandControlSweeper

• plType

setMonitorOptions(**kwargs)

Valid options for NdSweeper

• livePlot

• plotEvery

• stdoutPrint

• runServer

Valid options for CommandControlSweeper

• livePlot

• plotEvery

• stdoutPrint

• runServer

• cmdCtrlPrint

classmethod fromFile(filename)

class Actuation(function=None, domain=None, doOnEveryPoint=False)
Bases: object

function = None

domain = None

doOnEveryPoint = None

162 Chapter 3. API

https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

class NdSweeper
Bases: lightlab.util.sweep.Sweeper

Generic sweeper.

Here’s the difference between measure and parse:

measure is a call to something, usually an instrument and some simpe post processing, like peak finding.

• It is stored in data

• When subsuming, only unique measurements are kept

parse gets this in a form to visualize interactively, perhaps save and/or score along the way

• When subsuming, all parse functions are maintained

Make sure that measure is bound if it is a method

Specify the hard domain and actuate dimensions

The sweep dimension order is major first, so put your slow actuations (e.g. tuning lasers) before the fast
actuations (e.g. tuning current source)

Parameters

• domain (tuple, iterable) – the sweep values, or a tuple of sweep values for different
dimensions

• actuate (tuple, procedure-like) – procedure, one argument per, that is called
for each line of the sweep. Return is optional

• actuNames (tuple, str, None) – Names of actuator return values. These are stored
as data if present, under the key ‘’actuName-return’‘

• measure (dict) – dict of functions, no arguments, called at every point. Use descriptive
keys please.

• parse (dict) – dict of functions, operate on measurements, produce scalars Use descrip-
tive keys please.

measure = None

actuate = None

parse = None

static = None

classmethod repeater(nTrials)

gather(soakTime=None, autoSave=False, returnToStart=False)
Perform the sweep

Parameters

• soakTime (None, float) – wait this many seconds at the first point to let things settle

• autoSave (bool) – save data on completion, if savefile is specified

• returnToStart (bool) – If True, actuates everything to the first point after the sweep
completes

Returns None

3.1. lightlab package 163

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

addActuation(name, function, domain, doOnEveryPoint=False)
Specify an actuation dimension: what is called, the domain values to use as arguments.

Parameters

• name (str) – key for accessing this actuator’s value data

• function (func) – actuation function, usually linked to hardware. One argument.

• domain (ndarray, None) – 1D array of arguments that will be passed to the function.
If None, the function is called with a None argument every point (if doOnEveryPoint is
True).

• doOnEveryPoint (bool) – call this function in the inner loop (True) or once before
the corresponding rows(False)

addActuationObject(name, actuationObj)

reinitActuation()

addMeasurement(name, function)
Specify a measurement to be taken at every sweep point.

Parameters

• name (str) – key for accessing this measurement’s value data

• function (func) – measurement function, usually linked to hardware. No arguments.

addParser(name, function)
Adds additional parsing formulas to data, and reparses, if data has been taken

Parameters

• name (str) – key for accessing this parser’s value data

• function (func) – parsing function, not linked to hardware. One dictionary argument.

addStaticData(name, contents)
Add a ndarray or scalar that can be referenced by parsers

The array’s shape must match that of the currently loaded actuation grid.

If you then addActuation(), the static data automatically expands in dimension to accomodate. Values
are filled by tiling in the new dimension.

Add static data after the actuations that have different static data, but before the actuations for which you
want that data to be constant.

Parameters

• name (str) – key for accessing this data

• contents (scalar, ndarray) – data contents

subsume(other, useMinorOptions=False)
Makes the argument sweep a minor sweep within this one

The new measurement dictionary will contain all measurements of both. If there is a duplicate key,
the self measurement will take precedence

Existing data is discarded.

Parameters

• other (NdSweeper) – the minor sweep

164 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Lightlab Documentation, Release 1.1.0

• useMinorOptions (bool) – where do the options come from? If False, they come
from the major (i.e. self)

copy(includeData=True)
Shallow copy, which means function pointers are maintained

If includeData, it does a deep copy of data

plot(slicer=None, tempData=None, index=None, axArr=None, pltKwargs=None)
Plots

Much of the behavior to figure out labels and numbers for axes comes from the plotOptions attribute.

The xKeys and yKeys are keys within this objects data dictionary (actuation, measurement, and parsers)
The total number of plots will be the product of len(‘xKey’) and len(‘yKey’). xKeys can be anything,
including parsed data members. By default it is the minor actuation variable yKeys can also be
anything that has scalar elements. By default it is everything that is currently present, except xKeys
and non-scalars

When doing line plots in 2D sweeps, the legend does automatic labelling.

Each line must correspond to an actuation dimension, otherwise it doesn’t make sense. This is
despite the fact that the xKeys can still be anything.

Usually, each line corresponds to a particular domain value of the major sweep axis; however,
if that is specified as an xKey, the lines will correspond to the minor axis.

Surface plotting: Ignores whatever is in xKeys. The plotting domain is locked to the actuation domain in
order to keep a rectangular grid. The values indicated in yKeys will become color data.

Parameters

• slicer (tuple, slice) – domain slices

• axArr (ndarray), plt.axis) – axes to plot on. Equivalent to what is returned by
this method

• pltKwargs – passed through to plotting function

Todo:

• Graphics caching for 2D line plots

saveObj(savefile=None)
Also saves what are the actuation keys. This is important for plotting when you reload

classmethod loadObj(savefile, functionSource=None)
savefile must have been saved with saveObj. It restores actuation names and domains to help with plotting.

Functions referring to actuation and measurement cannot be saved.

functionSource: an instantiated object of class cls If you give it a functionSource, then those can be
restored as well. This is very useful if you have a parser such as live plot spectra, or move stuff here
or there. Also useful if you want to re-gather for some reason.

load(savefile=None)
This is basically make it so that gather() and load() have the same effect.

It does not keep actuation or measurement members, only whatever was put in self.data

Parameters savefile (str/Path) – file to load

3.1. lightlab package 165

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#slice

Lightlab Documentation, Release 1.1.0

simpleSweep(actuate, domain, measure=None)
Basic sweep in one dimension, without function keys, parsing, or plotting.

Parameters

• actuate (function) – a procedure or function of one argument called at every point

• domain (ndarray) – elements passed as an argument to actuate for each point

• measure (function, None) – a function of no arguments called at every point. None
means the return of actuate will act as the measurement

Returns what is measured. Same length as domain

Return type (ndarray)

class CommandControlSweeper(evaluate, defaultArg, swpInds, domain, nTrials=1)
Bases: lightlab.util.sweep.Sweeper

Generic command-control sweep for evaluating a controller.

The command function called at each point takes one argument that is an array (length M) and returns an array
of equal length.

The sweep is N (<= M) dimensional.

• The user specifies the mapping between the sweep domain and the argument/return array indeces

• The user specifies defaults for the other (M-N) arguments

• Some of the uncontrolled arguments can be monitored

Todo: How can we get this subsumed by a NdSweeper for trial repetition. CommandControlSweeper shouldn’t
be able to subsume as major

Parameters

• evaluate (function) – called at each point with array args/returns of equal length

• defaultArg (ndarray) – default value that will be sent to the evaluate function

• swpIndeces (tuple, int) – which channels to sweep

• domain (tuple, iterable) – the values over which the sweep channels will be swept

saveObj(savefile=None)
Instead of just saving data, save the whole damn thing.

Cannot save evaluate function because it is unbound.

classmethod loadObj(savefile)
This is basically make it so that gather() and load() have the same effect.

It does not keep actuation or measurement members, only whatever was put in self.data

gather(autoSave=False, randomize=False)
Executes the sweep

Todo: Store all outputs, but provide a way just to get the controlled ones

166 Chapter 3. API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

Lightlab Documentation, Release 1.1.0

toSweepData()
Using the old school temporary definition from conductor

This will eventually be deprecated

plot(index=None, axArr=None)

score(bits=False, worstCase=False)
Takes full sweep data and returns the worst-case accuracy and precision

Parameters

• bits (bool) – if true, returns values as bits of dynamic range

• worstCase (bool) – if true, takes the performance at the worst weight, else averages
via RMS

plotCmdCtrl(sweepData, index=None, ax=None, interactive=False)
sweepData should have ALL the command weights specified

Parameters

• sweepData (tuple) – cmdWeights, measWeights, monitWeights (optional)
measWeights has shape (nTrials, len(swp1), len(sp2) or 1, len(sweepingChannels))

• index (tuple) – tells which parts of measured weights are valid. If None, assumes sweep-
Data is complete

• interactive (bool) – show plot immediately after call, even with incomplete data
(index must be specified)

Todo: Fix the global hack for persistent plots – actually, this is fine

availablePlots(dims=None, swpType=None)
Filter by dims and swpType

If the argument is none, do not filter by that

assertValidPlotType(plType, dims=None, swpClass=None)

Subpackages:

lightlab.util.data package

Useful stuff having to do with data handling and processing.

one_dim.MeasuredFunction is the workhorse.

The Spectrum class is nice for working with dbm and linear units

peaks.findPeaks() and function_inversion.descend() hold the low-level algorithms. Usually, users
would interact with it via MeasuredFunction.

Submodules:

lightlab.util.data.basic module

Argument sanitizing and very basic array operations

3.1. lightlab package 167

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

Summary

Functions:

argFlatten Takes a combination of multiple arguments and flattens
the ones of type typs.

mangle Sanitizes attribute names that might be “hidden,” de-
noted by leading ‘__’.

minmax Returns a list of [min and max] of the array
rms
verifyListOfType Checks to see if the argument is a list or a single object

of the checkType Returns a list, even if it is length one
If arg is None, it returns None

Data:

MANGLE_LEN int(x=0) -> integer int(x, base=10) -> integer

Reference

verifyListOfType(arg, checkType)
Checks to see if the argument is a list or a single object of the checkType Returns a list, even if it is length one
If arg is None, it returns None

argFlatten(*argLists, typs=(<class ’list’>, <class ’tuple’>, <class ’set’>))
Takes a combination of multiple arguments and flattens the ones of type typs. None arguments are ignored, no
error.

Parameters

• *argLists – multiple arguments that could be lists or tuples

• typs (tuple) – types of things to flatten

Returns (tuple)

It goes like this:

dUtil.argFlatten() # == ()
dUtil.argFlatten(1) # == (1,)
dUtil.argFlatten((3, 4)) # == (3, 4)
dUtil.argFlatten(1, (3, 4), np.zeros(2)) # == (1, 3, 4,
→˓ndarray([0,0]))
dUtil.argFlatten(1, [3, 4], np.zeros(2)) # == (1, 3, 4,
→˓ndarray([0,0]))
dUtil.argFlatten(1, [3, 4], np.zeros(2), typs=tuple) # == (1, [3, 4],
→˓ndarray([0,0]))
dUtil.argFlatten(1, [3, 4], np.zeros(2), typs=np.ndarray) # == (1, [3, 4], 0., 0.)

mangle(name, klass)
Sanitizes attribute names that might be “hidden,” denoted by leading ‘__’. In Hashable objects, attributes
with this kind of name can only be class attributes.

See test_instrument_overloading for user-side implications.

Behavior:

168 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#tuple

Lightlab Documentation, Release 1.1.0

mangle('a', 'B') == 'a'
mangle('_a', 'B') == '_a'
mangle('__a__', 'B') == '__a__'
mangle('__a', 'B') == '_B__a'
mangle('__a', '_B') == '_B__a'

rms(diffArr, axis=0)

minmax(arr)
Returns a list of [min and max] of the array

lightlab.util.data.function_inversion module

Finding the x-value that provides a targeted y-value for measured functions

Summary

Functions:

descend From the start index, descend until reaching a threshold
level and return that index If it runs into the invalidInde-
ces or an edge, returns i at the edge of validity and False
for validPeak

interpInverse Gives a float representing the interpolated x value that
gives y=threshVal

Reference

descend(yArr, invalidIndeces, startIndex, direction, threshVal)
From the start index, descend until reaching a threshold level and return that index If it runs into the invalidIn-
deces or an edge, returns i at the edge of validity and False for validPeak

interpInverse(xArrIn, yArrIn, startIndex, direction, threshVal)
Gives a float representing the interpolated x value that gives y=threshVal

lightlab.util.data.one_dim module

One-dimensional data structures with substantial processing abilities

Summary

Classes:

MeasuredFunction Array of x,y points.
Spectrum Adds handling of linear/dbm units.
SpectrumGHz Spectrum with GHz units in the abscissa
Waveform Typically used for time, voltage functions.

Functions:

3.1. lightlab package 169

Lightlab Documentation, Release 1.1.0

prbs_generator Generator of PRBS bits.
prbs_pattern Returns an array containing a sequence of a PRBS pat-

tern.

Reference

prbs_generator(characteristic, state)
Generator of PRBS bits.

Example: polynomial = 0b1000010001 # 1 + X^5 + X^9 seed = 0b111100000

The above parameters will give you a PRBS9 bit sequence. Note: it might be inverted compared to the official
definition, i.e., 1s are 0s and vice versa.

prbs_pattern(polynomial, seed, length=None)
Returns an array containing a sequence of a PRBS pattern.

If length is not set, the sequence will be 2^n-1 long, corresponding to the repeating pattern of the PRBS sequence.

class MeasuredFunction(abscissaPoints, ordinatePoints, unsafe=False)
Bases: object

Array of x,y points. This is the workhorse class of lightlab data structures. Examples can be found through-
out Test notebooks.

Supports many kinds of operations:

1. Data access (mf(x), len(mf), mf[i], getData()) Calling the object with x-values interpolates
and returns y-values.

2. Storage (copy(), save(), load(), loadFromFile()) see method docstrings

3. x-axis signal processing (getSpan(), crop(), shift(), flip(), resample(), uniformlySample())
see method docstrings

4. y-axis signal processing (getRange(), clip(), debias(), unitRms(), getMean(), moment())
see method docstrings

5. Advanced signal processing (invert(), lowPass(), centerOfMass(), findResonanceFeatures())
see method docstrings

6. Binary math (+, -, *, /, ==)

Operands must be either

• the same subclass of MeasuredFunction, or

• scalar numbers, or

• functions/bound methods: these must be callable with one argument that is an ndarray

If both are MeasuredFunction, the domain used will be the smaller of the two

7. Plotting (simplePlot()) Args and Kwargs are passed to pyplot’s plot function. Supports live plotting
for notebooks

8. Others (deleteSegment(), splice()) see method docstrings

Parameters

• abscissaPoints (array) – abscissa, a.k.a. independent variable, a.k.a. domain

• ordinatePoints (array) – ordinate, a.k.a. dependent variable, a.k.a. range

170 Chapter 3. API

https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

• unsafe (bool) – if True, faster, give it 1-D np.ndarrays of the same length, or you will
get weird errors later on

absc = None
abscissa, a.k.a. the x-values or domain

ordi = None
ordinate, a.k.a. the y-values

getData()
Gives a tuple of the enclosed array data.

It is copied, so you can do what you want with it

Returns the enclosed data

Return type tuple(array,array)

copy()
Gives a copy, so that further operations can be performed without side effect.

Returns new object with same properties

Return type (MeasuredFunction/<childClass>)

save(savefile)

classmethod load(savefile)

simplePlot(*args, livePlot=False, **kwargs)
Plots on the current axis

Parameters

• livePlot (bool) – if True, displays immediately in IPython notebook

• *args (tuple) – arguments passed through to pyplot.plot

• **kwargs (dict) – arguments passed through to pyplot.plot

Returns Whatever is returned by pyplot.plot

subsample(newAbscissa)
Returns a new MeasuredFunction sampled at given points.

getSpan()
The span of the domain

Returns the minimum and maximum abscissa points

Return type (list[float,float])

abs()
Computes the absolute value of the measured function.

mean()

max()
Returns the maximum value of the ordinate axis, ignoring NaNs.

argmax()
Returns the abscissa value at which the ordinate is maximum.

min()
Returns the minimum value of the ordinate axis, ignoring NaNs.

3.1. lightlab package 171

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

argmin()
Returns the abscissa value at which the ordinate is minimum.

getRange()
The span of the ordinate

Returns the minimum and maximum values

Return type (list[float,float])

crop(segment)
Crop abscissa to segment domain.

Parameters segment (list[float,float]) – the span of the new abscissa domain

Returns new object

Return type MeasuredFunction

clip(amin, amax)
Clip ordinate to min/max range

Parameters

• amin (float) – minimum value allowed in the new MeasuredFunction

• amax (float) – maximum value allowed in the new MeasuredFunction

Returns new object

Return type MeasuredFunction

shift(shiftBy)
Shift abscissa. Good for biasing wavelengths.

Parameters shiftBy (float) – the number that will be added to the abscissa

Returns new object

Return type MeasuredFunction

flip()
Flips the abscissa, BUT DOES NOTHING the ordinate.

Usually, this is meant for spectra centered at zero. I.e.: flipping would be the same as negating abscissa

Returns new object

Return type MeasuredFunction

reverse()
Flips the ordinate, keeping abscissa in order

Returns new object

Return type MeasuredFunction

debias()
Removes mean from the function

Returns new object

Return type MeasuredFunction

unitRms()
Returns function with unit RMS or power

getMean()

172 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

getMedian()

getVariance()

getStd()

resample(nsamp=100)
Resample over the same domain span, but with a different number of points.

Parameters nsamp (int) – number of samples in the new object

Returns new object

Return type MeasuredFunction

uniformlySample()
Makes sure samples are uniform

Returns new object

Return type MeasuredFunction

addPoint(xyPoint)
Adds the (x, y) point to the stored absc and ordi

Parameters xyPoint (tuple) – x and y values to be inserted

Returns it modifies this object

Return type None

correlate(other)
Correlate signals with scipy.signal.correlate.

Only full mode and direct method is supported for now.

lowPass(windowWidth=None, mode=None)

movingAverage(windowWidth=None, mode=’valid’)
Low pass filter performed by convolving a moving average window.

The convolutional mode can be one of the following string tokens

• ‘valid’: the new span is reduced, but data is good looking

• ‘same’: new span is the same as before, but there are edge artifacts

Parameters

• windowWidth (float) – averaging window width in units of the abscissa

• mode (str) – convolutional mode

Returns new object

Return type MeasuredFunction

butterworthFilter(fc, order, btype)
Applies a Butterworth filter to the signal.

Side effects: the waveform will be resampled to have equally-sampled points.

Parameters fc (float) – cutoff frequency of the filter (cf. input to signal.butter)

Returns New object containing the filtered waveform

3.1. lightlab package 173

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

lowPassButterworth(fc, order=1)
Applies a low-pass Butterworth filter to the signal.

Side effects: the waveform will be resampled to have equally-sampled points.

Parameters fc (float) – cutoff frequency of the filter

Returns New object containing the filtered waveform

highPassButterworth(fc, order=1)
Applies a high-pass Butterworth filter to the signal.

Side effects: the waveform will be resampled to have equally-sampled points.

Parameters fc (float) – cutoff frequency of the filter

Returns New object containing the filtered waveform

bandPassButterworth(fc, order=1)
Applies a high-pass Butterworth filter to the signal.

Side effects: the waveform will be resampled to have equally-sampled points.

Parameters fc (length-2 float sequence) – cutoff frequency of the filter

Returns New object containing the filtered waveform

deleteSegment(segment)
Removes the specified segment from the abscissa.

This means calling within this segment will give the first-order interpolation of its edges.

Usually, deleting is followed by splicing in some new data in this span

Parameters segment (list[float,float]) – span over which to delete stored points

Returns new object

Return type MeasuredFunction

splice(other, segment=None)
Returns a Spectrum that is this one, except with the segment replaced with the other one’s data

The abscissa of the other matters. There is nothing changing (abscissa, ordinate) point pairs, only moving
them around from other to self.

If segment is not specified, uses the full domain of the other

Parameters

• other (MeasuredFunction) – the origin of new data

• segment (list[float,float]) – span over which to do splice stored points

Returns new object

Return type MeasuredFunction

invert(yVals, directionToDescend=None)
Descends down the function until yVal is reached in ordi. Returns the absc value

If the function is peaked, you should specify a direction to descend.

If the function is approximately monotonic, don’t worry about it.

Parameters

• yVals (scalar, ndarray) – array of y values to descend to

174 Chapter 3. API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Lightlab Documentation, Release 1.1.0

• directionToDescend (['left', 'right', None]) – use if peaked function
to tell which side. Not used if monotonic

Returns corresponding x values

Return type (scalar, ndarray)

centerOfMass()
Returns abscissa point where mass is centered

moment(order=2, relativeGauss=False)
The order’th moment of the function

Parameters order (integer) – the polynomial moment of inertia. Don’t trust the normal-
ization of > 2’th order. order = 1: mean order = 2: variance order = 3: skew order = 4:
kurtosis

Returns the specified moment

Return type (float)

findResonanceFeatures(**kwargs)
A convenient wrapper for findPeaks()

Parameters **kwargs – passed to findPeaks()

Returns the detected features as nice objects

Return type list[ResonanceFeature]

norm(ord=None)

class Spectrum(nm, power, inDbm=True, unsafe=False)
Bases: lightlab.util.data.one_dim.MeasuredFunction

Adds handling of linear/dbm units.

Use lin() and dbm() to make sure what you’re getting what you expect for things like binary math and
peakfinding, etc.

Parameters

• nm (array) – abscissa

• power (array) – ordinate

• inDbm (bool) – is the power in linear or dbm units?

inDbm
Is it in dbm units currently?

Returns

Return type bool

lin()
The spectrum in linear units

Returns new object

Return type Spectrum

db()
The spectrum in decibel units

Returns new object

Return type Spectrum

3.1. lightlab package 175

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

simplePlot(*args, livePlot=False, **kwargs)
More often then not, this is db vs. wavelength, so label it

refineResonanceWavelengths(filtShapes, seedRes=None, isPeak=None)
Convolutional resonance correction to get very robust resonance wavelengths

Does the resonance finding itself, unless an initial approximation is provided.

Also, has some special options for Spectrum types to make sure db/lin is optimal

Parameters

• filtShapes (list[MeasuredFunction]) – shapes of each resonance. Must be in
order of ascending abscissa/wavelength

• seedRes (list[ResonanceFeature]) – rough approximation of resonance prop-
erties. If None, this method will find them.

• isPeak (bool) – required to do peak finding, but not used if seedRes is specified

Returns the detected and refined features as nice objects

Return type list[ResonanceFeature]

Todo: take advantage of fft convolution for speed

findResonanceFeatures(**kwargs)
Overloads MeasuredFunction.findResonanceFeatures() to make sure it’s in db scale

Parameters **kwargs – kwargs passed to findPeaks

Returns the detected features as nice objects

Return type list[ResonanceFeature]

GHz()
Convert to SpectrumGHz

class SpectrumGHz(GHz, power, inDbm=True, unsafe=False)
Bases: lightlab.util.data.one_dim.Spectrum

Spectrum with GHz units in the abscissa

Use lin() and dbm() to make sure what you’re getting what you expect for things like binary math and
peakfinding, etc.

Parameters

• GHz (array) – abscissa

• power (array) – ordinate

• inDbm (bool) – is the power in linear or dbm units?

simplePlot(*args, livePlot=False, **kwargs)
More often then not, this is db vs. wavelength, so label it

nm()
Convert to Spectrum

class Waveform(t, v, unit=’V’, unsafe=False)
Bases: lightlab.util.data.one_dim.MeasuredFunction

Typically used for time, voltage functions. This is very similar to what is referred to as a “signal.”

176 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Lightlab Documentation, Release 1.1.0

Use the unit attribute to set units different than Volts.

Has class methods for generating common time-domain signals

unit = None

classmethod pulse(tArr, tOn, tOff)

classmethod whiteNoise(tArr, rmsPow)

lightlab.util.data.peaks module

Implementation of core peak finding algorithm. It is wrapped to be more user-friendly by
findResonanceFeatures().

ResonanceFeature is a data storage class returned by findResonanceFeatures()

Summary

Exceptions:

PeakFinderError

Classes:

ResonanceFeature A data holder for resonance features (i.e.

Functions:

findPeaks Takes an array and finds a specified number of peaks

Reference

class ResonanceFeature(lam, fwhm, amp, isPeak=True)
Bases: object

A data holder for resonance features (i.e. peaks or dips)

lam
float – center wavelength

fwhm
float – full width half maximum – can be less if the extinction depth is less than half

amp
float – peak amplitude

isPeak
float – is it a peak or a dip

copy()
Simple copy so you can modify without side effect

Returns new object

Return type ResonanceFeature

3.1. lightlab package 177

https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

simplePlot(*args, **kwargs)
Plots a box to visualize the resonance feature

The box is centered on the peak lam and amp with a width of fwhm.

Parameters

• *args – args passed to pyplot.plot

• **kwargs – kwargs passed to pyplot.plot

Returns whatever pyplot.plot returns

exception PeakFinderError
Bases: RuntimeError

findPeaks(yArrIn, isPeak=True, isDb=False, expectedCnt=1, descendMin=1, descendMax=3, minSep=0)
Takes an array and finds a specified number of peaks

Looks for maxima/minima that are separated from others, and stops after finding expectedCnt

Parameters

• isDb (bool) – treats dips like DB dips, so their width is relative to outside the peak, not
inside

• descendMin (float) – minimum amount to descend to be classified as a peak

• descendMax (float) – amount to descend down from the peaks to get the width (i.e.
FWHM is default)

• minSep (int) – the minimum spacing between two peaks, in array index units

Returns indeces of peaks, sorted from biggest peak to smallest peak array (float): width of peaks,
in array index units

Return type array (float)

Raises Exception – if not enough peaks found. This plots on fail, so you can see what’s going on

lightlab.util.data.two_dim module

Two dimensional measured objects where the second abscissa variable is either

• discrete (FunctionBundle), or

• continuous (MeasuredSurface)

Summary

Classes:

FunctionBundle A bundle of MeasuredFunction’s: “z” vs.
FunctionalBasis A FunctionBundle that supports additional linear alge-

bra methods
MeasuredErrorField A field that hold two abscissa arrays and two ordinate

matrices
MeasuredSurface Basically a two dimensional measured function: “z” vs.

Continued on next page

178 Chapter 3. API

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#Exception

Lightlab Documentation, Release 1.1.0

Table 78 – continued from previous page
Spectrogram

param absc same meaning as measured
function

Reference

class FunctionBundle(measFunList=None)
Bases: lightlab.laboratory.Hashable

A bundle of MeasuredFunction’s: “z” vs. “x”, “i”

The key is that they have the same abscissa base. This class will take care of resampling in a common abscissa
base.

The bundle can be:

• iterated to get the individual :class‘~lightlab.util.data.one_dim.MeasuredFunction‘’s

• operated on with other FunctionBundles

• plotted with :meth‘simplePlot‘ and multiAxisPlot()

Feeds through callable signal processing methods to its members (type MeasuredFunction), If the method is
not found in the FunctionBundle, and it is in it’s member, it will be mapped to every function in the bundle,
returning a new bundle.

Distinct from a MeasuredSurface because the additional axis does not represent a continuous thing. It is
discrete and sometimes unordered.

Distinct from a FunctionalBasis because it does not support most linear algebra-like stuff (e.g. decompo-
sision, matrix multiplication, etc.). This is not a strict rule.

Can be initialized fully, or initialized with None to be built interactively.

Parameters measFunList (list[MeasuredFunction] or None) – list of Measured-
Functions that must have the same abscissa.

addDim(newMeasFun)

copy()

extend(otherFunctionBund)

max()
Returns a single MeasuredFunction(subclass) that is the maximum of all in this bundle

min()
Returns a single MeasuredFunction(subclass) that is the minimum of all in this bundle

mean()
Returns a single MeasuredFunction(subclass) that is the mean of all in this bundle

simplePlot(*args, **kwargs)

multiAxisPlot(*args, axList=None, titleRoot=None, **kwargs)
titleRoot must take one argument in its format method, which is given the index :returns: The axes that
were plotted upon :rtype: (list(axis))

histogram()
Gives a MeasuredFunction of counts vs. ordinate values (typically voltage) Does not maintain any abscissa
information

3.1. lightlab package 179

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

Lightlab Documentation, Release 1.1.0

At this point, does not allow caller to set the arguments passed to np.histogram

This is mainly just for plotting

weightedAddition(weiVec)
Calculates the weighted addition of the basis signals

Parameters weiVec (array) – weights to be applied to the basis functions

Returns weighted addition of basis signals

Return type (MeasuredFunction)

moment(order=2, allDims=True, relativeGauss=False)
The order’th moment of all the points in the bundle.

Parameters

• order (integer) – the polynomial moment of inertia. Don’t trust the normalization of
> 2’th order. order = 1: mean order = 2: variance order = 3: skew order = 4: kurtosis

• allDims (bool) – if true, collapses all signals, returning a scalar

Returns the specified moment(s)

Return type (ndarray or float)

componentAnalysis(*args, pcaIca=True, lNorm=2, expectedComponents=None, **kwargs)
Gives the waveform representing the principal component of the order

Parameters

• pcaIca (bool) – if True, does PCA; if False, does ICA

• lNorm (int) – how to normalize weight vectors. L1 norm uses the maximum abs weight,
while L2 norm (default) is vector unit

• expectedComponents (FunctionBundle or subclass) – Used for flipping
signs

• kwargs (args,) – Feed through to sklearn.decomposition.[PCA(), FastICA()]

Returns principal component waveforms

Return type (FunctionBundle or subclass)

correctSigns(otherBundle, maintainOrder=True)
Goes through each component and flips the sign if correlation is negative

ICA also has a permutation indeterminism.

class FunctionalBasis(measFunList=None)
Bases: lightlab.util.data.two_dim.FunctionBundle

A FunctionBundle that supports additional linear algebra methods

Created for weighted addition, decomposition, and component analysis

Can be initialized fully, or initialized with None to be built interactively.

Parameters measFunList (list[MeasuredFunction] or None) – list of Measured-
Functions that must have the same abscissa.

classmethod independentDefault(nDims)
Gives a basis of non-overlapping pulses. Waveforms only

innerProds(trial)
takes the inner products of the trial function onto this basis.

180 Chapter 3. API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

Lightlab Documentation, Release 1.1.0

magnitudes()
The inner product of the basis with itself

project(trial)
Projects onto normalized basis If the basis is orthogonal, this is equivalent to weight decomposition

decompose(trial, moment=1)
Uses the Moore-Penrose pseudoinverse to get weight decomposition without orthogonality

Parameters

• trial (MeasuredFunction) – signal to be decomposed

• moment (float) – polynomial moment of the basis to use when decomposing

matrixMultiply(weiMat)

getMoment(weiVecs=None, order=2, relativeGauss=False)
This is actually the projected moment. Named for compatibility with bss package

Make sure weiVecs is two dimensional

remainder(trial)
Gives the remaining parts of the signal that are not explained by the minimum-squared-error decomposition

covariance()
Returns covariance matrix of the basis, which is nDims x nDims

class MeasuredSurface(absc, ordi)
Bases: object

Basically a two dimensional measured function: “z” vs. “x”, “y”

Useful trick when gathering data: build incrementally using FunctionBundle.addDim(), then convert
that to this class using MeasuredSurface.fromFunctionBundle().

Parameters

• absc (ndarray) – same meaning as measured function

• ordi (ndarray) – two-dimensional array or matrix

classmethod fromFunctionBundle(otherBund, addedAbsc=None)
gives back a MeasuredSurface from a function Bundle

Parameters

• otherBund (FunctionBundle) – The source. The ordering of functions matters

• addedAbsc (np.ndarray) – the second dimension abscissa array (default, integers)

Returns (MeasuredSurface) new object

item(index, dim=None)

shape()

simplePlot(*args, **kwargs)

class Spectrogram(absc, ordi)
Bases: lightlab.util.data.two_dim.MeasuredSurface

Parameters

• absc (ndarray) – same meaning as measured function

• ordi (ndarray) – two-dimensional array or matrix

3.1. lightlab package 181

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

class MeasuredErrorField(nominalGrid, measuredGrid)
Bases: object

A field that hold two abscissa arrays and two ordinate matrices

Error is the measuredGrid - nominalGrid, which is a vector field

errorAt(testVec=None)

invert(desiredVec)

zeroCenteredSquareSize()
Very stupid, just look at corner points

Returns square sides of nominal and measured grids

Return type (tuple(float))

lightlab.util.io package

Functions for filesystem handling

Submodules:

lightlab.util.io.errors module

Summary

Exceptions:

ChannelError
DeprecatedError Make sure to describe the new alternative
RangeError It is useful to put the type of error ‘high’ or ‘low’ in the

second argument of this class’ initializer

Reference

exception ChannelError
Bases: Exception

exception RangeError
Bases: Exception

It is useful to put the type of error ‘high’ or ‘low’ in the second argument of this class’ initializer

exception DeprecatedError
Bases: Exception

Make sure to describe the new alternative

lightlab.util.io.jsonpickleable module

Objects that can be serialized in a (sort of) human readable json format

Tested in tests.test_JSONpickleable.

182 Chapter 3. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

Lightlab Documentation, Release 1.1.0

Summary

Classes:

HardwareReference Spoofs an instrument
JSONpickleable Produces human readable json files.

Reference

class HardwareReference(klassname)
Bases: object

Spoofs an instrument

open()

class JSONpickleable(**kwargs)
Bases: lightlab.laboratory.Hashable

Produces human readable json files. Inherits _toJSON from Hashable Automatically strips attributes beginning
with __.

notPickled
set – names of attributes that will be guaranteed to exist in instances. They will not go into the pickled
string. Good for references to things like hardware instruments that you should re-init when reloading.

See the test_JSONpickleable for much more detail

What is not pickled?

1. attributes with names in notPickled

2. attributes starting with __

3. VISAObjects: they are replaced with a placeholder HardwareReference

4. bound methods (not checked, will error if you try)

What functions can be pickled

1. module-level, such as np.linspace

2. lambdas

Todo: This should support unbound methods

Args: filepath (str/Path): path string to file to save to

notPickled = set()

copy()
This will throw out hardware references and anything starting with __

Good test for what will be saved

save(filename)

classmethod load(filename)

3.1. lightlab package 183

https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

lightlab.util.io.paths module

Resolves several directories as follows. These can be overridden after import if desired.

1. projectDir The git repo of the file that first imported io

2. dataHome = (default) projectDir / "data" Where all your data is saved.

3. fileDir = (default) dataHome Where all the save/load functions will look. Usually this is set differently
from notebook to notebook.

4. monitorDir = (default) projectDir / "progress-monitor" Where html for sweep progress
monitoring will be written by ProgressWriter.

5. lightlabDevelopmentDir The path to a source directory of lightlab for development. It is found
through the “.pathtolightlab” file. This is currently unused.

lightlab.util.io.progress module

Some utility functions for printing to stdout used in the project

Also contains web-based progress monitoring

Summary

Classes:

ProgressWriter Writes progress to an html file for long sweeps.

Functions:

printProgress Deletes current line and writes.
printWait Prints your message followed by ...
ptag

Reference

printWait(*args)
Prints your message followed by ...

This displays immediately, but

• your next print will show up on the same line

Parameters *args (Tuple(str)) – Strings that will be written

printProgress(*args)
Deletes current line and writes.

This is used for updating iterating values so to not produce a ton of output

Parameters *args (str, Tuple(str)) – Arguments that will be written

class ProgressWriter(name, swpSize, runServer=True, stdoutPrint=False, **kwargs)
Bases: object

184 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

Lightlab Documentation, Release 1.1.0

Writes progress to an html file for long sweeps. Including timestamps. Has an init and an update method

You can then open this file to the internet by running a HTTP server.

To setup a continuously running server:

screen -S sweepProgressServer
(Enter)
cd /home/atait/Documents/calibration-instrumentation/sweepMonitorServer/
python3 -m http.server 8050
(Ctrl-a, d)

To then access from a web browser:: http://lightwave-lab-olympias.princeton.edu:8050

Todo: Have this class launch its own process server upon init Make it so you can specify actuator names

Parameters

• name (str) – name to be displayed

• swpSize (tuple) – size of each dimension of the sweep

progFileDefault = PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/lightlab/checkouts/development/progress-monitor/sweep.html')

tFmt = '%a, %d %b %Y %H:%M:%S'

static getUrl()
URL where the progress monitor will be hosted

update(steps=1)

classmethod tims(epochTime)

ptag(s)

lightlab.util.io.saveload module

Summary

Functions:

loadMat returns a dictionary of data.
loadPickle Uses pickle
loadPickleGzip Uses pickle and then gzips the file.
pprintFileDir Prints the contents of io.fileDir.
saveFigure if None, uses the gcf()
saveMat dataDict has keys as names you would like to appear in

matlab, values are numpy arrays, N-D arrays, or matri-
ces.

savePickle Uses pickle
savePickleGzip Uses pickle

3.1. lightlab package 185

http://lightwave-lab-olympias.princeton.edu:8050
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Lightlab Documentation, Release 1.1.0

Reference

pprintFileDir(*, generate=False)
Prints the contents of io.fileDir. If the file can be loaded by this module, it gives the command to do so.

Returns A sorted list of files

savePickle(filename, dataTuple)
Uses pickle

Parameters

• filename (str, Path) – file to write to

• dataTuple (tuple) – tuple containing almost anything

loadPickle(filename)
Uses pickle

savePickleGzip(filename, dataTuple)
Uses pickle

Parameters

• filename (str, Path) – file to write to

• dataTuple (tuple) – tuple containing almost anything

loadPickleGzip(filename)
Uses pickle and then gzips the file.

If it is named file.abc.gz, loads as file.abc.gz If it is named file.abc, loads as file.abc.pkl

saveMat(filename, dataDict)
dataDict has keys as names you would like to appear in matlab, values are numpy arrays, N-D arrays, or matrices.

loadMat(filename)
returns a dictionary of data. This should perfectly invert saveMat. Matlab files only store matrices. This auto-
squeezes 1-dimensional matrices to arrays. Be careful if you are tyring to load a 1-d numpy matrix as an actual
numpy matrix

saveFigure(filename, figHandle=None)
if None, uses the gcf()

3.1.5 Summary

Functions:

log_to_screen
log_visa_to_screen

Data:

CRITICAL int(x=0) -> integer int(x, base=10) -> integer
DEBUG int(x=0) -> integer int(x, base=10) -> integer
ERROR int(x=0) -> integer int(x, base=10) -> integer
INFO int(x=0) -> integer int(x, base=10) -> integer
NOTSET int(x=0) -> integer int(x, base=10) -> integer

Continued on next page

186 Chapter 3. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Lightlab Documentation, Release 1.1.0

Table 85 – continued from previous page
WARNING int(x=0) -> integer int(x, base=10) -> integer

3.1.6 Reference

log_to_screen(level=20)

log_visa_to_screen(level=30)

3.2 tests package

Submodules:

3.2.1 tests.test_JSONpickleable module

3.2.2 tests.test_config module

3.2.3 tests.test_configurable module

3.2.4 tests.test_driverMetaclassing module

3.2.5 tests.test_electrical_sources module

3.2.6 tests.test_imports module

3.2.7 tests.test_instrument_overloading module

3.2.8 tests.test_labstate module

3.2.9 tests.test_multiChannelLaserSource module

3.2.10 tests.test_prologix module

3.2.11 tests.test_virtualization module

3.2.12 tests.test_visa_drivers module

Note: This documentation contains ipython notebooks. It is possible to open them with a jupyter kernel and run them
interactively to play with knobs and see more plotting features.

• genindex

• modindex

• search

3.2. tests package 187

Lightlab Documentation, Release 1.1.0

188 Chapter 3. API

Bibliography

[TFerreiradLimaN+16a] A.N. Tait, T. Ferreira de Lima, M.A. Nahmias, B.J. Shastri, and P.R. Prucnal. Continuous
calibration of microring weights for analog optical networks. Photonics Technol. Lett., 28(8):887–890, April 2016.
doi:10.1109/LPT.2016.2516440.

[TFerreiradLimaN+16b] Alexander N. Tait, Thomas Ferreira de Lima, Mitchell A. Nahmias, Bhavin J. Shastri, and
Paul R. Prucnal. Multi-channel control for microring weight banks. Opt. Express, 24(8):8895–8906, Apr 2016.
URL: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-8-8895, doi:10.1364/OE.24.008895.

189

https://doi.org/10.1109/LPT.2016.2516440
http://www.opticsexpress.org/abstract.cfm?URI=oe-24-8-8895
https://doi.org/10.1364/OE.24.008895

Lightlab Documentation, Release 1.1.0

190 Bibliography

Python Module Index

l
lightlab, 91
lightlab.command_line, 91
lightlab.equipment, 92
lightlab.equipment.abstract_drivers, 92
lightlab.equipment.abstract_drivers.configurable,

94
lightlab.equipment.abstract_drivers.electrical_sources,

97
lightlab.equipment.abstract_drivers.multimodule_configurable,

98
lightlab.equipment.abstract_drivers.power_meters,

100
lightlab.equipment.abstract_drivers.TekScopeAbstract,

92
lightlab.equipment.lab_instruments, 101
lightlab.equipment.lab_instruments.Advantest_Q8221_PM,

101
lightlab.equipment.lab_instruments.Agilent_33220_FG,

102
lightlab.equipment.lab_instruments.Agilent_83712B_clock,

103
lightlab.equipment.lab_instruments.Agilent_N5183A_VG,

103
lightlab.equipment.lab_instruments.Agilent_N5222A_NA,

105
lightlab.equipment.lab_instruments.Anritsu_MP1763B_PPG,

106
lightlab.equipment.lab_instruments.Apex_AP2440A_OSA,

108
lightlab.equipment.lab_instruments.Arduino_Instrument,

109
lightlab.equipment.lab_instruments.HP_8116A_FG,

110
lightlab.equipment.lab_instruments.HP_8152A_PM,

111
lightlab.equipment.lab_instruments.HP_8156A_VA,

112
lightlab.equipment.lab_instruments.HP_8157A_VA,

112
lightlab.equipment.lab_instruments.ILX_7900B_LS,

113
lightlab.equipment.lab_instruments.Keithley_2400_SM,

115
lightlab.equipment.lab_instruments.Keithley_2606B_SMU,

117
lightlab.equipment.lab_instruments.NI_PCI_6723,

119
lightlab.equipment.lab_instruments.RandS_SMBV100A_VG,

120
lightlab.equipment.lab_instruments.Tektronix_CSA8000_CAS,

123
lightlab.equipment.lab_instruments.Tektronix_DPO4032_Oscope,

123
lightlab.equipment.lab_instruments.Tektronix_DPO4034_Oscope,

124
lightlab.equipment.lab_instruments.Tektronix_DSA8300_Oscope,

125
lightlab.equipment.lab_instruments.Tektronix_PPG3202,

126
lightlab.equipment.lab_instruments.Tektronix_RSA6120B_RFSA,

127
lightlab.equipment.lab_instruments.Tektronix_TDS6154C_Oscope,

128
lightlab.equipment.visa_bases, 129
lightlab.equipment.visa_bases.driver_base,

129
lightlab.equipment.visa_bases.prologix_gpib,

131
lightlab.equipment.visa_bases.visa_driver,

133
lightlab.equipment.visa_bases.visa_object,

135
lightlab.laboratory, 136
lightlab.laboratory.devices, 136
lightlab.laboratory.experiments, 136
lightlab.laboratory.instruments, 144
lightlab.laboratory.instruments.bases,

144

191

Lightlab Documentation, Release 1.1.0

lightlab.laboratory.instruments.interfaces,
149

lightlab.laboratory.state, 137
lightlab.laboratory.virtualization, 141
lightlab.util, 153
lightlab.util.characterize, 153
lightlab.util.config, 155
lightlab.util.data, 167
lightlab.util.data.basic, 167
lightlab.util.data.function_inversion,

169
lightlab.util.data.one_dim, 169
lightlab.util.data.peaks, 177
lightlab.util.data.two_dim, 178
lightlab.util.gitpath, 156
lightlab.util.io, 182
lightlab.util.io.errors, 182
lightlab.util.io.jsonpickleable, 182
lightlab.util.io.paths, 184
lightlab.util.io.progress, 184
lightlab.util.io.saveload, 185
lightlab.util.measprocessing, 156
lightlab.util.plot, 157
lightlab.util.search, 158
lightlab.util.sweep, 161

t
tests, 187

192 Python Module Index

Index

A
abs() (MeasuredFunction method), 171
absc (MeasuredFunction attribute), 171
abspath() (in module lightlab.util.gitpath), 156
AbstractDriver (class in light-

lab.equipment.abstract_drivers), 101
AccessException, 94
acquire() (TekScopeAbstract method), 93
acquire() (Tektronix_DPO4032_Oscope method), 124
actuate (NdSweeper attribute), 163
Actuation (class in lightlab.util.sweep), 162
addActuation() (NdSweeper method), 163
addActuationObject() (NdSweeper method), 164
addDevice() (Bench method), 146
addDim() (FunctionBundle method), 179
addInstrument() (Bench method), 146
addInstrument() (Host method), 146
addMeasurement() (NdSweeper method), 164
addNoise() (RandS_SMBV100A_VG method), 121
addParser() (NdSweeper method), 164
addPoint() (MeasuredFunction method), 173
address (Instrument attribute), 147
addStaticData() (NdSweeper method), 164
Advantest_Q8221_PM (class in light-

lab.equipment.lab_instruments.Advantest_Q8221_PM),
101

Agilent_33220_FG (class in light-
lab.equipment.lab_instruments.Agilent_33220_FG),
102

Agilent_83712B_clock (class in light-
lab.equipment.lab_instruments.Agilent_83712B_clock),
103

Agilent_N5183A_VG (class in light-
lab.equipment.lab_instruments.Agilent_N5183A_VG),
104

Agilent_N5222A_NA (class in light-
lab.equipment.lab_instruments.Agilent_N5222A_NA),
105

allOff() (ILX_7900B_LS method), 115

allOn() (ILX_7900B_LS method), 115
amp (ResonanceFeature attribute), 177
amplAndOffs() (Agilent_33220_FG method), 102
amplAndOffs() (Anritsu_MP1763B_PPG method), 107
amplAndOffs() (HP_8116A_FG method), 110
amplitude() (Agilent_N5183A_VG method), 104
amplitude() (Agilent_N5222A_NA method), 105
amplitude() (RandS_SMBV100A_VG method), 121
amplitudeRange (Agilent_33220_FG attribute), 102
amplitudeRange (HP_8116A_FG attribute), 110
Anritsu_MP1763B_PPG (class in light-

lab.equipment.lab_instruments.Anritsu_MP1763B_PPG),
107

Apex_AP2440A_OSA (class in light-
lab.equipment.lab_instruments.Apex_AP2440A_OSA),
108

Arduino_Instrument (class in light-
lab.equipment.lab_instruments.Arduino_Instrument),
109

ArduinoInstrument (class in light-
lab.laboratory.instruments.interfaces), 152

argFlatten() (in module lightlab.util.data.basic), 168
argmax() (MeasuredFunction method), 171
argmin() (MeasuredFunction method), 171
asReal() (Experiment method), 137
asReal() (Virtualizable method), 142
assertValidPlotType() (in module lightlab.util.sweep), 167
asVirtual() (VirtualInstrument method), 143
asVirtual() (Virtualizable method), 142
attenDB (HP_8156A_VA attribute), 112
attenDB (HP_8157A_VA attribute), 113
attenLin (HP_8156A_VA attribute), 112
attenLin (HP_8157A_VA attribute), 113
autoAdjust() (TekScopeAbstract method), 94
autoDisable (Keithley_2400_SM attribute), 116
availablePlots() (in module lightlab.util.sweep), 167

B
bandPassButterworth() (MeasuredFunction method), 174
baseToVoltCoef (MultiModalSource attribute), 97

193

Lightlab Documentation, Release 1.1.0

baseToVoltCoef (NI_PCI_6723 attribute), 119
baseUnit2val() (lightlab.equipment.abstract_drivers.electrical_sources.MultiModalSource

class method), 97
baseUnitBounds (MultiModalSource attribute), 97
baseUnitBounds (NI_PCI_6723 attribute), 119
Bench (class in lightlab.laboratory.instruments.bases),

146
bench (Device attribute), 149
bench (Instrument attribute), 148
bench (Node attribute), 153
benches (LabState attribute), 138
bgSmoothDefault (SpectrumMeasurementAssistant at-

tribute), 157
binarySearch() (in module lightlab.util.search), 160
bitseq() (Anritsu_MP1763B_PPG method), 107
bracketSearch() (in module lightlab.util.search), 160
BuggyHardware, 129
butterworthFilter() (MeasuredFunction method), 173

C
calibration (HP_8156A_VA attribute), 112
calibration (HP_8157A_VA attribute), 113
carrierMod() (RandS_SMBV100A_VG method), 122
centerOfMass() (MeasuredFunction method), 175
channel (Keithley_2606B_SMU attribute), 117
channelDescriptions (Advantest_Q8221_PM attribute),

101
channelDescriptions (HP_8152A_PM attribute), 111
channelDescriptions (PowerMeterAbstract attribute), 100
ChannelError, 182
channelOff() (Tektronix_PPG3202 method), 126
channelOn() (Tektronix_PPG3202 method), 126
check() (NamedList method), 153
check() (TypedList method), 153
check_presence() (NamedList method), 153
check_socket() (in module light-

lab.equipment.lab_instruments.Apex_AP2440A_OSA),
108

checkInstrumentsLive() (Host method), 146
clear() (InstrumentSessionBase method), 130
clear() (PrologixGPIBObject method), 133
clear() (VISAObject method), 136
clip() (MeasuredFunction method), 172
Clock (class in lightlab.laboratory.instruments.interfaces),

150
close() (Apex_AP2440A_OSA method), 108
close() (DynamicLine method), 158
close() (InstrumentSession method), 134
close() (InstrumentSessionBase method), 130
close() (Keithley_2606B_SMU method), 117
close() (NI_PCI_6723 method), 119
close() (PrologixGPIBObject method), 133
close() (VISAInstrumentDriver method), 134
close() (VISAObject method), 135

CommandControlSweeper (class in lightlab.util.sweep),
166

compliance (Keithley_2606B_SMU attribute), 118
componentAnalysis() (FunctionBundle method), 180
config (Configurable attribute), 95
config_main() (in module lightlab.util.config), 156
config_save() (in module lightlab.util.config), 156
ConfigModule (class in light-

lab.equipment.abstract_drivers.multimodule_configurable),
99

Configurable (class in light-
lab.equipment.abstract_drivers.configurable),
95

connect() (TCPSocketConnection method), 130
connected() (TCPSocketConnection method), 130
connectHost() (Instrument method), 148
connections (Experiment attribute), 137
connections (LabState attribute), 139
context (Hashable attribute), 152
copy() (FunctionBundle method), 179
copy() (JSONpickleable method), 183
copy() (MeasuredFunction method), 171
copy() (NdSweeper method), 165
copy() (ResonanceFeature method), 177
copy() (TekConfig method), 94
correctSigns() (FunctionBundle method), 180
correlate() (MeasuredFunction method), 173
covariance() (FunctionalBasis method), 181
crop() (MeasuredFunction method), 172
CurrentSource (class in light-

lab.laboratory.instruments.interfaces), 150
currStep (Keithley_2400_SM attribute), 116
currStep (Keithley_2606B_SMU attribute), 117

D
db() (Spectrum method), 175
debias() (MeasuredFunction method), 172
decompose() (FunctionalBasis method), 181
DefaultDriver (in module light-

lab.equipment.visa_bases.visa_driver), 134
deleteInstrumentFromName() (LabState method), 139
deleteSegment() (MeasuredFunction method), 174
DeprecatedError, 182
descend() (in module light-

lab.util.data.function_inversion), 169
Device (class in lightlab.laboratory.instruments.bases),

148
devices (Bench attribute), 146
devices (Experiment attribute), 137
devices (LabState attribute), 139
devices_dict (LabState attribute), 140
dfbChans (ILX_7900B_LS attribute), 114
dict (NamedList attribute), 153
digiMod() (RandS_SMBV100A_VG method), 122

194 Index

Lightlab Documentation, Release 1.1.0

disconnect() (TCPSocketConnection method), 130
display() (Bench method), 147
display() (Device method), 149
display() (Experiment method), 137
display() (Host method), 146
display() (Instrument method), 148
doesMFbracket() (in module lightlab.util.search), 160
domain (Actuation attribute), 162
doOnEveryPoint (Actuation attribute), 162
doReadDoubleCheck (HP_8152A_PM attribute), 111
driver (Instrument attribute), 148
driver_class (Instrument attribute), 148
driver_object (Instrument attribute), 148
DriverMeta (class in light-

lab.equipment.visa_bases.visa_driver), 134
DSAOscilloscope (class in light-

lab.laboratory.instruments.interfaces), 151
DualFunction (class in lightlab.laboratory.virtualization),

143
DualInstrument (class in light-

lab.laboratory.virtualization), 143
DualMethod (class in lightlab.laboratory.virtualization),

144
duty() (Agilent_33220_FG method), 103
duty() (HP_8116A_FG method), 110
DynamicLine (class in lightlab.util.plot), 158

E
elChans (MultiChannelSource attribute), 98
enable() (Agilent_33220_FG method), 102
enable() (Agilent_83712B_clock method), 103
enable() (Agilent_N5183A_VG method), 104
enable() (Agilent_N5222A_NA method), 106
enable() (HP_8116A_FG method), 110
enable() (Keithley_2400_SM method), 116
enable() (Keithley_2606B_SMU method), 118
enable() (RandS_SMBV100A_VG method), 121
enableState (ILX_7900B_LS attribute), 114
enforceRange() (lightlab.equipment.abstract_drivers.electrical_sources.MultiModalSource

class method), 97
errorAt() (MeasuredErrorField method), 182
essentialMethods (ArduinoInstrument attribute), 152
essentialMethods (Clock attribute), 150
essentialMethods (CurrentSource attribute), 150
essentialMethods (DSAOscilloscope attribute), 151
essentialMethods (FunctionGenerator attribute), 150
essentialMethods (Instrument attribute), 147
essentialMethods (Keithley attribute), 150
essentialMethods (LaserSource attribute), 151
essentialMethods (NetworkAnalyzer attribute), 152
essentialMethods (NICurrentSource attribute), 150
essentialMethods (OpticalSpectrumAnalyzer attribute),

151
essentialMethods (Oscilloscope attribute), 151

essentialMethods (PatternGenerator attribute), 152
essentialMethods (PowerMeter attribute), 150
essentialMethods (PulsePatternGenerator attribute), 151
essentialMethods (RFSpectrumAnalyzer attribute), 151
essentialMethods (SourceMeter attribute), 150
essentialMethods (VariableAttenuator attribute), 151
essentialMethods (VectorGenerator attribute), 150
essentialProperties (Instrument attribute), 147
essentialProperties (LaserSource attribute), 151
essentialProperties (OpticalSpectrumAnalyzer attribute),

151
essentialProperties (VariableAttenuator attribute), 151
exceptOnRangeError (MultiModalSource attribute), 97
exceptOnRangeError (NI_PCI_6723 attribute), 119
Experiment (class in lightlab.laboratory.experiments),

136
extend() (FunctionBundle method), 179

F
fgResPlot() (SpectrumMeasurementAssistant method),

157
fgSpect() (SpectrumMeasurementAssistant method), 157
filename (LabState attribute), 141
findBenchFromDevice() (LabState method), 140
findBenchFromInstrument() (LabState method), 140
findGpibAddressById() (Host method), 145
findHostFromInstrument() (LabState method), 140
findPeaks() (in module lightlab.util.data.peaks), 178
findResonanceFeatures() (MeasuredFunction method),

175
findResonanceFeatures() (Spectrum method), 176
flip() (MeasuredFunction method), 172
foo() (built-in function), 36
frequency (Agilent_83712B_clock attribute), 103
frequency() (Agilent_33220_FG method), 102
frequency() (Agilent_N5183A_VG method), 104
frequency() (Agilent_N5222A_NA method), 105
frequency() (HP_8116A_FG method), 110
frequency() (RandS_SMBV100A_VG method), 121
fromFile() (lightlab.equipment.abstract_drivers.configurable.TekConfig

class method), 95
fromFile() (lightlab.util.sweep.Sweeper class method),

162
fromFunctionBundle() (light-

lab.util.data.two_dim.MeasuredSurface class
method), 181

fromSETresponse() (light-
lab.equipment.abstract_drivers.configurable.TekConfig
class method), 95

FrozenDict (class in lightlab.laboratory), 152
function (Actuation attribute), 162
FunctionalBasis (class in lightlab.util.data.two_dim), 180
FunctionBundle (class in lightlab.util.data.two_dim), 179

Index 195

Lightlab Documentation, Release 1.1.0

FunctionGenerator (class in light-
lab.laboratory.instruments.interfaces), 150

fwhm (ResonanceFeature attribute), 177

G
gather() (CommandControlSweeper method), 166
gather() (NdSweeper method), 163
gather() (Sweeper method), 161
generateDefaults() (Configurable method), 97
get() (TekConfig method), 94
get_all_gpib_id() (Host method), 145
get_config() (in module lightlab.util.config), 155
get_config_param() (in module lightlab.util.config), 155
getAmplitude() (Tektronix_PPG3202 method), 126
getAsSpectrum() (ILX_7900B_LS method), 115
getBgSpect() (SpectrumMeasurementAssistant method),

157
getChannelEnable() (ILX_7900B_LS method), 114
getChannelPowers() (ILX_7900B_LS method), 115
getChannelTuning() (MultiChannelSource method), 98
getChannelTuning() (NI_PCI_6723 method), 120
getChannelWls() (ILX_7900B_LS method), 115
getClockDivider() (Tektronix_PPG3202 method), 127
getConfigArray() (MultiModuleConfigurable method),

99
getConfigDict() (MultiModuleConfigurable method), 100
getConfigParam() (Configurable method), 96
getCurrent() (Keithley_2400_SM method), 116
getCurrent() (Keithley_2606B_SMU method), 118
getData() (MeasuredFunction method), 171
getDataRate() (Tektronix_PPG3202 method), 126
getDefaultFilename() (Configurable method), 96
getList() (TekConfig method), 94
getMean() (MeasuredFunction method), 172
getMeasurements() (Tektronix_RSA6120B_RFSA

method), 127
getMedian() (MeasuredFunction method), 172
getMoment() (FunctionalBasis method), 181
getOffset() (Tektronix_PPG3202 method), 126
getPattern() (Anritsu_MP1763B_PPG method), 107
getPatternType() (Tektronix_PPG3202 method), 127
getRange() (MeasuredFunction method), 172
getSpan() (MeasuredFunction method), 171
getStd() (MeasuredFunction method), 173
getSwpDuration() (Agilent_N5222A_NA method), 106
getUrl() (ProgressWriter static method), 185
getVariance() (MeasuredFunction method), 173
getVoltage() (Keithley_2400_SM method), 116
getVoltage() (Keithley_2606B_SMU method), 118
getWLrangeFromHardware() (Apex_AP2440A_OSA

method), 109
GHz() (Spectrum method), 176
global_hardware_warmup() (Experiment method), 137
gpib_port_to_address() (Host method), 145

H
hardware() (DualFunction method), 143
hardware_cooldown() (Experiment method), 137
hardware_cooldown() (Instrument method), 147
hardware_cooldown() (Oscilloscope method), 151
hardware_cooldown() (SourceMeter method), 150
hardware_warmup() (Experiment method), 137
hardware_warmup() (Instrument method), 147
hardware_warmup() (OpticalSpectrumAnalyzer method),

151
hardware_warmup() (SourceMeter method), 150
HardwareReference (class in light-

lab.util.io.jsonpickleable), 183
hash_sha256() (in module lightlab.laboratory.state), 138
Hashable (class in lightlab.laboratory), 152
highPassButterworth() (MeasuredFunction method), 174
histogram() (FunctionBundle method), 179
histogramStats() (Tektronix_DSA8300_Oscope method),

126
Host (class in lightlab.laboratory.instruments.bases), 145
host (Instrument attribute), 148
hostname (Host attribute), 145
hosts (LabState attribute), 138
HP_8116A_FG (class in light-

lab.equipment.lab_instruments.HP_8116A_FG),
110

HP_8152A_PM (class in light-
lab.equipment.lab_instruments.HP_8152A_PM),
111

HP_8156A_VA (class in light-
lab.equipment.lab_instruments.HP_8156A_VA),
112

HP_8157A_VA (class in light-
lab.equipment.lab_instruments.HP_8157A_VA),
112

I
id_string (Instrument attribute), 148
ILX_7900B_LS (class in light-

lab.equipment.lab_instruments.ILX_7900B_LS),
113

ILX_Module (class in light-
lab.equipment.lab_instruments.ILX_7900B_LS),
113

implementedOptionals (Instrument attribute), 147
IncompleteClass, 134
inDbm (Spectrum attribute), 175
independentDefault() (light-

lab.util.data.two_dim.FunctionalBasis class
method), 180

init_module() (in module lightlab.laboratory.state), 141
initHardware() (Configurable method), 95
innerProds() (FunctionalBasis method), 180
insert() (NamedList method), 153

196 Index

Lightlab Documentation, Release 1.1.0

insertDevice() (LabState method), 139
insertInstrument() (LabState method), 139
instrID() (Apex_AP2440A_OSA method), 109
instrID() (HP_8116A_FG method), 110
instrID() (InstrumentSessionBase method), 130
instrID() (Keithley_2606B_SMU method), 118
instrID() (NI_PCI_6723 method), 119
instrID() (VISAObject method), 135
Instrument (class in light-

lab.laboratory.instruments.bases), 147
instrument_category (Advantest_Q8221_PM attribute),

101
instrument_category (Agilent_33220_FG attribute), 102
instrument_category (Agilent_83712B_clock attribute),

103
instrument_category (Agilent_N5183A_VG attribute),

104
instrument_category (Agilent_N5222A_NA attribute),

105
instrument_category (Anritsu_MP1763B_PPG attribute),

107
instrument_category (Apex_AP2440A_OSA attribute),

108
instrument_category (Arduino_Instrument attribute), 109
instrument_category (HP_8116A_FG attribute), 110
instrument_category (HP_8152A_PM attribute), 111
instrument_category (HP_8156A_VA attribute), 112
instrument_category (HP_8157A_VA attribute), 113
instrument_category (ILX_7900B_LS attribute), 114
instrument_category (Keithley_2400_SM attribute), 116
instrument_category (Keithley_2606B_SMU attribute),

117
instrument_category (NI_PCI_6723 attribute), 119
instrument_category (RandS_SMBV100A_VG attribute),

121
instrument_category (Tektronix_DPO4034_Oscope at-

tribute), 125
instrument_category (Tektronix_DSA8300_Oscope at-

tribute), 126
instrument_category (Tektronix_PPG3202 attribute), 126
instrument_category (Tektronix_RSA6120B_RFSA at-

tribute), 127
instrument_category (Tektronix_TDS6154C_Oscope at-

tribute), 128
instrument_category (VISAInstrumentDriver attribute),

134
InstrumentIOError, 134
instruments (Bench attribute), 146
instruments (Experiment attribute), 137
instruments (Host attribute), 145
instruments (LabState attribute), 139
instruments_dict (LabState attribute), 138
instruments_requirements (Experiment attribute), 137

InstrumentSession (class in light-
lab.equipment.visa_bases.visa_driver), 134

InstrumentSessionBase (class in light-
lab.equipment.visa_bases.driver_base), 129

interpInverse() (in module light-
lab.util.data.function_inversion), 169

InvalidOption, 155
InvalidSection, 155
invert() (MeasuredErrorField method), 182
invert() (MeasuredFunction method), 174
is_master() (Keithley_2606B_SMU method), 118
is_valid() (Experiment method), 137
isLive() (Host method), 145
isLive() (Instrument method), 148
isLive() (LocalHost method), 146
isPeak (ResonanceFeature attribute), 177
item() (MeasuredSurface method), 181
items() (NamedList method), 153

J
JSONpickleable (class in lightlab.util.io.jsonpickleable),

183

K
Keithley (class in light-

lab.laboratory.instruments.interfaces), 150
Keithley_2400_SM (class in light-

lab.equipment.lab_instruments.Keithley_2400_SM),
116

Keithley_2606B_SMU (class in light-
lab.equipment.lab_instruments.Keithley_2606B_SMU),
117

keys (NamedList attribute), 153
killResonances() (SpectrumMeasurementAssistant

method), 157

L
lab (Experiment attribute), 137
LabState (class in lightlab.laboratory.state), 138
labstate_main() (in module lightlab.command_line), 91
lam (ResonanceFeature attribute), 177
LaserSource (class in light-

lab.laboratory.instruments.interfaces), 150
lightlab (module), 91
lightlab.command_line (module), 91
lightlab.equipment (module), 92
lightlab.equipment.abstract_drivers (module), 92
lightlab.equipment.abstract_drivers.configurable (mod-

ule), 94
lightlab.equipment.abstract_drivers.electrical_sources

(module), 97
lightlab.equipment.abstract_drivers.multimodule_configurable

(module), 98

Index 197

Lightlab Documentation, Release 1.1.0

lightlab.equipment.abstract_drivers.power_meters (mod-
ule), 100

lightlab.equipment.abstract_drivers.TekScopeAbstract
(module), 92

lightlab.equipment.lab_instruments (module), 101
lightlab.equipment.lab_instruments.Advantest_Q8221_PM

(module), 101
lightlab.equipment.lab_instruments.Agilent_33220_FG

(module), 102
lightlab.equipment.lab_instruments.Agilent_83712B_clock

(module), 103
lightlab.equipment.lab_instruments.Agilent_N5183A_VG

(module), 103
lightlab.equipment.lab_instruments.Agilent_N5222A_NA

(module), 105
lightlab.equipment.lab_instruments.Anritsu_MP1763B_PPG

(module), 106
lightlab.equipment.lab_instruments.Apex_AP2440A_OSA

(module), 108
lightlab.equipment.lab_instruments.Arduino_Instrument

(module), 109
lightlab.equipment.lab_instruments.HP_8116A_FG

(module), 110
lightlab.equipment.lab_instruments.HP_8152A_PM

(module), 111
lightlab.equipment.lab_instruments.HP_8156A_VA

(module), 112
lightlab.equipment.lab_instruments.HP_8157A_VA

(module), 112
lightlab.equipment.lab_instruments.ILX_7900B_LS

(module), 113
lightlab.equipment.lab_instruments.Keithley_2400_SM

(module), 115
lightlab.equipment.lab_instruments.Keithley_2606B_SMU

(module), 117
lightlab.equipment.lab_instruments.NI_PCI_6723 (mod-

ule), 119
lightlab.equipment.lab_instruments.RandS_SMBV100A_VG

(module), 120
lightlab.equipment.lab_instruments.Tektronix_CSA8000_CAS

(module), 123
lightlab.equipment.lab_instruments.Tektronix_DPO4032_Oscope

(module), 123
lightlab.equipment.lab_instruments.Tektronix_DPO4034_Oscope

(module), 124
lightlab.equipment.lab_instruments.Tektronix_DSA8300_Oscope

(module), 125
lightlab.equipment.lab_instruments.Tektronix_PPG3202

(module), 126
lightlab.equipment.lab_instruments.Tektronix_RSA6120B_RFSA

(module), 127
lightlab.equipment.lab_instruments.Tektronix_TDS6154C_Oscope

(module), 128
lightlab.equipment.visa_bases (module), 129

lightlab.equipment.visa_bases.driver_base (module), 129
lightlab.equipment.visa_bases.prologix_gpib (module),

131
lightlab.equipment.visa_bases.visa_driver (module), 133
lightlab.equipment.visa_bases.visa_object (module), 135
lightlab.laboratory (module), 136
lightlab.laboratory.devices (module), 136
lightlab.laboratory.experiments (module), 136
lightlab.laboratory.instruments (module), 144
lightlab.laboratory.instruments.bases (module), 144
lightlab.laboratory.instruments.interfaces (module), 149
lightlab.laboratory.state (module), 137
lightlab.laboratory.virtualization (module), 141
lightlab.util (module), 153
lightlab.util.characterize (module), 153
lightlab.util.config (module), 155
lightlab.util.data (module), 167
lightlab.util.data.basic (module), 167
lightlab.util.data.function_inversion (module), 169
lightlab.util.data.one_dim (module), 169
lightlab.util.data.peaks (module), 177
lightlab.util.data.two_dim (module), 178
lightlab.util.gitpath (module), 156
lightlab.util.io (module), 182
lightlab.util.io.errors (module), 182
lightlab.util.io.jsonpickleable (module), 182
lightlab.util.io.paths (module), 184
lightlab.util.io.progress (module), 184
lightlab.util.io.saveload (module), 185
lightlab.util.measprocessing (module), 156
lightlab.util.plot (module), 157
lightlab.util.search (module), 158
lightlab.util.sweep (module), 161
lin() (Spectrum method), 175
list_gpib_resources_info() (Host method), 145
list_resources_info() (Host method), 145
listEnable() (RandS_SMBV100A_VG method), 123
LLO() (InstrumentSessionBase method), 129
LLO() (PrologixGPIBObject method), 133
LLO() (VISAObject method), 135
load() (lightlab.util.data.one_dim.MeasuredFunction

class method), 171
load() (lightlab.util.io.jsonpickleable.JSONpickleable

class method), 183
load() (NdSweeper method), 165
load() (Sweeper method), 162
loadConfig() (Configurable method), 96
loadMat() (in module lightlab.util.io.saveload), 186
loadObj() (lightlab.util.sweep.CommandControlSweeper

class method), 166
loadObj() (lightlab.util.sweep.NdSweeper class method),

165
loadPickle() (in module lightlab.util.io.saveload), 186
loadPickle() (in module lightlab.util.sweep), 161

198 Index

Lightlab Documentation, Release 1.1.0

loadPickleGzip() (in module lightlab.util.io.saveload),
186

loadState() (lightlab.laboratory.state.LabState class
method), 140

LOC() (InstrumentSessionBase method), 130
LOC() (PrologixGPIBObject method), 133
LOC() (VISAObject method), 136
LocalHost (class in light-

lab.laboratory.instruments.bases), 146
lock() (Experiment method), 137
log_to_screen() (in module lightlab), 187
log_visa_to_screen() (in module lightlab), 187
lowPass() (MeasuredFunction method), 173
lowPassButterworth() (MeasuredFunction method), 173

M
mac_address (Host attribute), 145
MAGIC_TIMEOUT (Apex_AP2440A_OSA attribute),

108
MAGIC_TIMEOUT (Keithley_2606B_SMU attribute),

117
MAGIC_TIMEOUT (NI_PCI_6723 attribute), 119
magnitudes() (FunctionalBasis method), 180
main() (in module lightlab.command_line), 91
mangle() (in module lightlab.util.data.basic), 168
MasterExperiment (class in light-

lab.laboratory.experiments), 137
matrixMultiply() (FunctionalBasis method), 181
max() (FunctionBundle method), 179
max() (MeasuredFunction method), 171
maxChannel (ILX_7900B_LS attribute), 114
maxChannel (MultiChannelSource attribute), 98
maxChannel (MultiModuleConfigurable attribute), 99
maxChannel (NI_PCI_6723 attribute), 119
mbSession (VISAObject attribute), 135
mean() (FunctionBundle method), 179
mean() (MeasuredFunction method), 171
measCurrent() (Keithley_2400_SM method), 116
measCurrent() (Keithley_2606B_SMU method), 118
measure (NdSweeper attribute), 163
measure() (TekScopeAbstract method), 93
MeasuredErrorField (class in lightlab.util.data.two_dim),

181
MeasuredFunction (class in lightlab.util.data.one_dim),

170
MeasuredSurface (class in lightlab.util.data.two_dim),

181
measurementSetup() (Agilent_N5222A_NA method),

106
measVoltage() (Keithley_2400_SM method), 116
measVoltage() (Keithley_2606B_SMU method), 118
min() (FunctionBundle method), 179
min() (MeasuredFunction method), 171
minmax() (in module lightlab.util.data.basic), 169

MockInstrument (class in light-
lab.laboratory.instruments.bases), 148

modulationEnable() (RandS_SMBV100A_VG method),
121

moduleIds (MultiModuleConfigurable attribute), 100
moment() (FunctionBundle method), 180
moment() (MeasuredFunction method), 175
monitorOptions (Sweeper attribute), 161
monitorVariable() (in module lightlab.util.characterize),

154
movingAverage() (MeasuredFunction method), 173
multiAxisPlot() (FunctionBundle method), 179
MultiChannelSource (class in light-

lab.equipment.abstract_drivers.electrical_sources),
98

MultiModalSource (class in light-
lab.equipment.abstract_drivers.electrical_sources),
97

MultiModuleConfigurable (class in light-
lab.equipment.abstract_drivers.multimodule_configurable),
99

multiSpectra() (Agilent_N5222A_NA method), 106

N
name (Bench attribute), 146
name (Device attribute), 149
name (Experiment attribute), 137
name (Host attribute), 145
name (Instrument attribute), 148
NamedList (class in lightlab.laboratory), 153
NdSweeper (class in lightlab.util.sweep), 162
NetworkAnalyzer (class in light-

lab.laboratory.instruments.interfaces), 152
NI_PCI_6723 (class in light-

lab.equipment.lab_instruments.NI_PCI_6723),
119

NICurrentSource (class in light-
lab.laboratory.instruments.interfaces), 150

nm() (SpectrumGHz method), 176
Node (class in lightlab.laboratory), 152
norm() (MeasuredFunction method), 175
normalize() (Agilent_N5222A_NA method), 106
NotFoundError, 148
notPickled (JSONpickleable attribute), 183

O
off() (HP_8156A_VA method), 112
off() (HP_8157A_VA method), 113
off() (ILX_7900B_LS method), 115
off() (MultiChannelSource method), 98
off() (NI_PCI_6723 method), 120
on() (Anritsu_MP1763B_PPG method), 107
on() (HP_8156A_VA method), 112
on() (HP_8157A_VA method), 113

Index 199

Lightlab Documentation, Release 1.1.0

open() (Advantest_Q8221_PM method), 102
open() (Apex_AP2440A_OSA method), 108
open() (HardwareReference method), 183
open() (HP_8152A_PM method), 111
open() (InstrumentSession method), 134
open() (InstrumentSessionBase method), 130
open() (Keithley_2606B_SMU method), 117
open() (NI_PCI_6723 method), 119
open() (PrologixGPIBObject method), 133
open() (VISAInstrumentDriver method), 134
open() (VISAObject method), 135
OpticalSpectrumAnalyzer (class in light-

lab.laboratory.instruments.interfaces), 151
optionalAttributes (Clock attribute), 150
optionalAttributes (FunctionGenerator attribute), 150
optionalAttributes (Instrument attribute), 147
optionalAttributes (LaserSource attribute), 151
optionalAttributes (Oscilloscope attribute), 151
ordi (MeasuredFunction attribute), 171
os (Host attribute), 145
Oscilloscope (class in light-

lab.laboratory.instruments.interfaces), 151

P
parse (NdSweeper attribute), 163
parse_param() (in module lightlab.util.config), 155
patch_labstate() (in module lightlab.laboratory.state), 141
PatternGenerator (class in light-

lab.laboratory.instruments.interfaces), 152
PeakFinderError, 178
peakSearch() (in module lightlab.util.search), 159
placeBench() (Instrument method), 148
placeBench() (Node method), 153
plot() (CommandControlSweeper method), 167
plot() (NdSweeper method), 165
plotAfterPointMeasurement() (in module light-

lab.util.search), 159
plotCmdCtrl() (in module lightlab.util.sweep), 167
plotCovEllipse() (in module lightlab.util.plot), 158
plotOptions (Sweeper attribute), 161
port (PrologixResourceManager attribute), 132
port (TCPSocketConnection attribute), 130
ports (Device attribute), 149
ports (Instrument attribute), 147
powerDbm() (Advantest_Q8221_PM method), 102
powerDbm() (HP_8152A_PM method), 111
powerLin() (PowerMeterAbstract method), 101
PowerMeter (class in light-

lab.laboratory.instruments.interfaces), 149
PowerMeterAbstract (class in light-

lab.equipment.abstract_drivers.power_meters),
100

powerRange (ILX_7900B_LS attribute), 114
powers (ILX_7900B_LS attribute), 115

pprintFileDir() (in module lightlab.util.io.saveload), 186
prbs_generator() (in module lightlab.util.data.one_dim),

170
prbs_pattern() (in module lightlab.util.data.one_dim), 170
PRBS_pattern() (lightlab.equipment.lab_instruments.Anritsu_MP1763B_PPG.Anritsu_MP1763B_PPG

class method), 108
print() (TekConfig method), 94
print_config_param() (in module lightlab.util.config), 156
printProgress() (in module lightlab.util.io.progress), 184
printWait() (in module lightlab.util.io.progress), 184
proccessWeirdRead() (HP_8152A_PM static method),

111
progFileDefault (ProgressWriter attribute), 185
ProgressWriter (class in lightlab.util.io.progress), 184
project() (FunctionalBasis method), 181
PrologixGPIBObject (class in light-

lab.equipment.visa_bases.prologix_gpib),
132

PrologixResourceManager (class in light-
lab.equipment.visa_bases.prologix_gpib),
131

protectionCurrent (Keithley_2400_SM attribute), 116
protectionCurrent (Keithley_2606B_SMU attribute), 118
protectionVoltage (Keithley_2400_SM attribute), 116
protectionVoltage (Keithley_2606B_SMU attribute), 118
ptag() (in module lightlab.util.io.progress), 185
pulse() (lightlab.util.data.one_dim.Waveform class

method), 177
PulsePatternGenerator (class in light-

lab.laboratory.instruments.interfaces), 151

Q
query() (Apex_AP2440A_OSA method), 109
query() (Arduino_Instrument method), 109
query() (ConfigModule method), 99
query() (InstrumentSessionBase method), 130
query() (Keithley_2606B_SMU method), 118
query() (NI_PCI_6723 method), 119
query() (PrologixGPIBObject method), 133
query() (PrologixResourceManager method), 132
query() (TCPSocketConnection method), 131
query() (VISAObject method), 135
query_ascii_values() (InstrumentSessionBase method),

130
query_print() (Keithley_2606B_SMU method), 118
query_raw_binary() (InstrumentSessionBase method),

130
query_raw_binary() (PrologixGPIBObject method), 133
query_raw_binary() (VISAObject method), 136

R
rampStepTime (Keithley_2400_SM attribute), 116
rampStepTime (Keithley_2606B_SMU attribute), 117

200 Index

Lightlab Documentation, Release 1.1.0

RandS_SMBV100A_VG (class in light-
lab.equipment.lab_instruments.RandS_SMBV100A_VG),
120

RangeError, 182
rawSpect() (SpectrumMeasurementAssistant method),

157
read_only (NamedList attribute), 153
real_obj (DualInstrument attribute), 143
recv() (TCPSocketConnection method), 131
refineResonanceWavelengths() (Spectrum method), 176
refresh() (DynamicLine method), 158
registerConnection() (Experiment method), 137
registerConnections() (Experiment method), 137
registerInstrument() (Experiment method), 137
registerInstruments() (Experiment method), 137
reinitActuation() (NdSweeper method), 164
reinstantiate_session() (Apex_AP2440A_OSA method),

108
reinstantiate_session() (InstrumentSession method), 134
reinstantiate_session() (Keithley_2606B_SMU method),

117
reinstantiate_session() (NI_PCI_6723 method), 119
remainder() (FunctionalBasis method), 181
removeDevice() (Bench method), 146
removeInstrument() (Bench method), 146
removeInstrument() (Host method), 146
repeater() (lightlab.util.sweep.NdSweeper class method),

163
resample() (MeasuredFunction method), 173
reset_config_param() (in module lightlab.util.config), 156
resMan (VISAObject attribute), 135
ResonanceFeature (class in lightlab.util.data.peaks), 177
resonances() (SpectrumMeasurementAssistant method),

157
reverse() (MeasuredFunction method), 172
RFSpectrumAnalyzer (class in light-

lab.laboratory.instruments.interfaces), 151
rms() (in module lightlab.util.data.basic), 169
robust_query() (HP_8152A_PM method), 111
root (in module lightlab.util.gitpath), 156
run() (Agilent_N5222A_NA method), 106
run() (TekScopeAbstract method), 93
run() (Tektronix_RSA6120B_RFSA method), 127

S
safeSleepTime (HP_8156A_VA attribute), 112
safeSleepTime (HP_8157A_VA attribute), 113
save() (JSONpickleable method), 183
save() (MeasuredFunction method), 171
save() (Sweeper method), 162
save() (TekConfig method), 95
saveConfig() (Configurable method), 96
saveFigure() (in module lightlab.util.io.saveload), 186
saveMat() (in module lightlab.util.io.saveload), 186

saveObj() (CommandControlSweeper method), 166
saveObj() (NdSweeper method), 165
savePickle() (in module lightlab.util.io.saveload), 186
savePickle() (in module lightlab.util.sweep), 161
savePickleGzip() (in module lightlab.util.io.saveload),

186
saveState() (LabState method), 141
score() (CommandControlSweeper method), 167
SearchRangeError, 159
selectPrefix (ConfigModule attribute), 99
send() (TCPSocketConnection method), 131
sendToHardware() (HP_8156A_VA method), 112
sendToHardware() (HP_8157A_VA method), 113
sendToHardware() (NI_PCI_6723 method), 120
separator (TekConfig attribute), 94
set() (TekConfig method), 94
set_config_param() (in module lightlab.util.config), 156
set_sense_mode() (Keithley_2606B_SMU method), 118
setArbitraryWaveform() (Agilent_33220_FG method),

102
setAtten() (HP_8156A_VA method), 112
setAtten() (HP_8157A_VA method), 113
setBgConst() (SpectrumMeasurementAssistant method),

157
setBgNulled() (SpectrumMeasurementAssistant method),

157
setBgSmoothed() (SpectrumMeasurementAssistant

method), 157
setBgTuned() (SpectrumMeasurementAssistant method),

157
setChannelEnable() (ILX_7900B_LS method), 114
setChannelPowers() (ILX_7900B_LS method), 115
setChannelTuning() (MultiChannelSource method), 98
setChannelTuning() (NI_PCI_6723 method), 119
setChannelWls() (ILX_7900B_LS method), 114
setClockDivider() (Tektronix_PPG3202 method), 126
setConfigArray() (ILX_7900B_LS method), 114
setConfigArray() (MultiModuleConfigurable method),

100
setConfigDict() (MultiModuleConfigurable method), 100
setConfigParam() (Configurable method), 95
setCurrent() (Keithley_2400_SM method), 116
setCurrent() (Keithley_2606B_SMU method), 118
setCurrentMode() (Keithley_2400_SM method), 116
setCurrentMode() (Keithley_2606B_SMU method), 118
setDataMemory() (Tektronix_PPG3202 method), 126
setDataRate() (Tektronix_PPG3202 method), 126
setHexDataMemory() (Tektronix_PPG3202 method), 126
setList() (TekConfig method), 95
setMainParam() (Tektronix_PPG3202 method), 126
setMeasurement() (TekScopeAbstract method), 93
setMeasurement() (Tektronix_RSA6120B_RFSA

method), 127
setMonitorOptions() (Sweeper method), 162

Index 201

Lightlab Documentation, Release 1.1.0

setPattern() (Anritsu_MP1763B_PPG method), 107
setPattern() (RandS_SMBV100A_VG method), 122
setPlotOptions() (Sweeper method), 162
setPort() (Keithley_2400_SM method), 116
setPrbs() (Anritsu_MP1763B_PPG method), 107
setProtectionCurrent() (Keithley_2400_SM method), 116
setProtectionCurrent() (Keithley_2606B_SMU method),

118
setProtectionVoltage() (Keithley_2400_SM method), 116
setProtectionVoltage() (Keithley_2606B_SMU method),

118
setVoltage() (Keithley_2400_SM method), 116
setVoltage() (Keithley_2606B_SMU method), 118
setVoltageMode() (Keithley_2400_SM method), 116
setVoltageMode() (Keithley_2606B_SMU method), 118
sgramInit() (Tektronix_RSA6120B_RFSA method), 127
sgramTransfer() (Tektronix_RSA6120B_RFSA method),

127
shape() (MeasuredSurface method), 181
shift() (MeasuredFunction method), 172
simplePlot() (FunctionBundle method), 179
simplePlot() (MeasuredFunction method), 171
simplePlot() (MeasuredSurface method), 181
simplePlot() (ResonanceFeature method), 177
simplePlot() (Spectrum method), 175
simplePlot() (SpectrumGHz method), 176
simpleSweep() (in module lightlab.util.sweep), 165
sleepOn (ILX_7900B_LS attribute), 114
smu_defaults() (Keithley_2606B_SMU method), 118
smu_full_string (Keithley_2606B_SMU attribute), 118
smu_reset() (Keithley_2606B_SMU method), 118
smu_string (Keithley_2606B_SMU attribute), 118
SourceMeter (class in light-

lab.laboratory.instruments.interfaces), 150
Spectrogram (class in lightlab.util.data.two_dim), 181
Spectrum (class in lightlab.util.data.one_dim), 175
spectrum() (Agilent_N5222A_NA method), 106
spectrum() (Apex_AP2440A_OSA method), 109
spectrum() (Tektronix_RSA6120B_RFSA method), 128
SpectrumGHz (class in lightlab.util.data.one_dim), 176
SpectrumMeasurementAssistant (class in light-

lab.util.measprocessing), 157
splice() (MeasuredFunction method), 174
spoll() (InstrumentSessionBase method), 129
spoll() (PrologixGPIBObject method), 132
spoll() (VISAObject method), 136
startup() (Advantest_Q8221_PM method), 101
startup() (Agilent_33220_FG method), 102
startup() (Agilent_83712B_clock method), 103
startup() (Agilent_N5222A_NA method), 105
startup() (Anritsu_MP1763B_PPG method), 107
startup() (Apex_AP2440A_OSA method), 108
startup() (Experiment method), 137
startup() (HP_8116A_FG method), 110

startup() (HP_8152A_PM method), 111
startup() (HP_8156A_VA method), 112
startup() (HP_8157A_VA method), 113
startup() (ILX_7900B_LS method), 114
startup() (Keithley_2400_SM method), 116
startup() (Keithley_2606B_SMU method), 118
startup() (NI_PCI_6723 method), 119
startup() (PrologixResourceManager method), 132
startup() (TCPSocketConnection method), 131
startup() (TekScopeAbstract method), 92
startup() (Tektronix_RSA6120B_RFSA method), 127
startup() (VISAInstrumentDriver method), 134
static (NdSweeper attribute), 163
storedPattern (Anritsu_MP1763B_PPG attribute), 107
strobeTest() (in module lightlab.util.characterize), 154
subsample() (MeasuredFunction method), 171
subsume() (NdSweeper method), 164
supportedModes (MultiModalSource attribute), 97
supportedModes (NI_PCI_6723 attribute), 119
sweepEnable() (Agilent_N5183A_VG method), 104
sweepEnable() (Agilent_N5222A_NA method), 106
Sweeper (class in lightlab.util.sweep), 161
sweepSetup() (Agilent_N5183A_VG method), 104
sweepSetup() (Agilent_N5222A_NA method), 106
sweptStrobe() (in module lightlab.util.characterize), 154
synced (Virtualizable attribute), 142
synchronize() (Virtualizable method), 142
syncSource() (Anritsu_MP1763B_PPG method), 107

T
targetPort (NI_PCI_6723 attribute), 119
TCPSocketConnection (class in light-

lab.equipment.visa_bases.driver_base), 130
tcpTest() (NI_PCI_6723 method), 119
TekConfig (class in light-

lab.equipment.abstract_drivers.configurable),
94

TekScopeAbstract (class in light-
lab.equipment.abstract_drivers.TekScopeAbstract),
92

Tektronix_CSA8000_CAS (class in light-
lab.equipment.lab_instruments.Tektronix_CSA8000_CAS),
123

Tektronix_DPO4032_Oscope (class in light-
lab.equipment.lab_instruments.Tektronix_DPO4032_Oscope),
124

Tektronix_DPO4034_Oscope (class in light-
lab.equipment.lab_instruments.Tektronix_DPO4034_Oscope),
125

Tektronix_DSA8300_Oscope (class in light-
lab.equipment.lab_instruments.Tektronix_DSA8300_Oscope),
125

Tektronix_PPG3202 (class in light-
lab.equipment.lab_instruments.Tektronix_PPG3202),

202 Index

Lightlab Documentation, Release 1.1.0

126
Tektronix_RSA6120B_RFSA (class in light-

lab.equipment.lab_instruments.Tektronix_RSA6120B_RFSA),
127

Tektronix_TDS6154C_Oscope (class in light-
lab.equipment.lab_instruments.Tektronix_TDS6154C_Oscope),
128

tempConfig() (Configurable method), 96
termination (PrologixGPIBObject attribute), 133
termination (VISAObject attribute), 136
tests (module), 187
tFmt (ProgressWriter attribute), 185
timebaseConfig() (TekScopeAbstract method), 92
timebaseConfig() (Tektronix_DPO4032_Oscope

method), 124
timeout (InstrumentSessionBase attribute), 130
timeout (PrologixGPIBObject attribute), 133
timeout (VISAObject attribute), 135
timestamp_string() (in module lightlab.laboratory.state),

138
tims() (lightlab.util.io.progress.ProgressWriter class

method), 185
tlsEnable (Apex_AP2440A_OSA attribute), 109
tlsWl (Apex_AP2440A_OSA attribute), 109
toSweepData() (CommandControlSweeper method), 166
totalChans (TekScopeAbstract attribute), 92
totalChans (Tektronix_DPO4032_Oscope attribute), 124
totalChans (Tektronix_DPO4034_Oscope attribute), 125
totalChans (Tektronix_DSA8300_Oscope attribute), 126
totalChans (Tektronix_TDS6154C_Oscope attribute),

128
transfer() (TekConfig method), 95
transferData() (Apex_AP2440A_OSA method), 109
triggerAcquire() (Apex_AP2440A_OSA method), 109
triggerSetup() (Agilent_N5222A_NA method), 106
tsp_node (Keithley_2606B_SMU attribute), 117
tsp_startup() (Keithley_2606B_SMU method), 118
typed_property() (in module lightlab.laboratory), 153
TypedList (class in lightlab.laboratory), 153

U
uniformlySample() (MeasuredFunction method), 173
unit (Waveform attribute), 177
unitRms() (MeasuredFunction method), 172
unlock() (Experiment method), 137
update() (ProgressWriter method), 185
updateBench() (LabState method), 139
updateConnections() (LabState method), 139
updateHost() (LabState method), 139
useBgs (SpectrumMeasurementAssistant attribute), 157

V
v2maCoef (MultiModalSource attribute), 97
v2maCoef (NI_PCI_6723 attribute), 119

val2baseUnit() (lightlab.equipment.abstract_drivers.electrical_sources.MultiModalSource
class method), 97

valid (Experiment attribute), 137
validate() (Experiment method), 137
validate_exprs (Experiment attribute), 137
validate_param() (in module lightlab.util.config), 155
validateChannel() (PowerMeterAbstract method), 100
values (NamedList attribute), 153
VariableAttenuator (class in light-

lab.laboratory.instruments.interfaces), 151
VectorGenerator (class in light-

lab.laboratory.instruments.interfaces), 150
verifyListOfType() (in module lightlab.util.data.basic),

168
virt_obj (DualInstrument attribute), 143
virtual (DualInstrument attribute), 143
virtual (Virtualizable attribute), 142
virtual() (DualFunction method), 144
VirtualInstrument (class in light-

lab.laboratory.virtualization), 142
Virtualizable (class in lightlab.laboratory.virtualization),

142
VirtualizationError, 144
virtualOnly (in module lightlab.laboratory.virtualization),

141
VISAInstrumentDriver (class in light-

lab.equipment.visa_bases.visa_driver), 134
VISAObject (class in light-

lab.equipment.visa_bases.visa_object), 135
voltStep (Keithley_2400_SM attribute), 116
voltStep (Keithley_2606B_SMU attribute), 117

W
wait() (InstrumentSessionBase method), 130
wait() (PrologixGPIBObject method), 133
wait() (VISAObject method), 135
waitMsOnWrite (NI_PCI_6723 attribute), 119
wake() (NI_PCI_6723 method), 120
warmedUp() (Instrument method), 147
Waveform (class in lightlab.util.data.one_dim), 176
waveform() (Agilent_33220_FG method), 102
waveform() (HP_8116A_FG method), 110
wavelength (HP_8156A_VA attribute), 112
wavelength (HP_8157A_VA attribute), 113
weightedAddition() (FunctionBundle method), 180
wfmDb() (TekScopeAbstract method), 93
wfmDb() (Tektronix_DPO4034_Oscope method), 125
whiteNoise() (lightlab.util.data.one_dim.Waveform class

method), 177
wlRange (Apex_AP2440A_OSA attribute), 109
wlRanges (ILX_7900B_LS attribute), 115
wls (ILX_7900B_LS attribute), 114
write() (Apex_AP2440A_OSA method), 109
write() (Arduino_Instrument method), 109

Index 203

Lightlab Documentation, Release 1.1.0

write() (ConfigModule method), 99
write() (InstrumentSessionBase method), 130
write() (Keithley_2606B_SMU method), 118
write() (NI_PCI_6723 method), 119
write() (PrologixGPIBObject method), 133
write() (VISAObject method), 135
write_default_config() (in module lightlab.util.config),

155

Z
zeroCenteredSquareSize() (MeasuredErrorField method),

182

204 Index

	Pre-requisites
	Hardware
	pyvisa

	Installation
	Installation Instructions
	Getting Started to Python, Jupyter, git
	Making your changes to lightlab
	Tutorials
	Miscellaneous Documentation

	API
	lightlab package
	tests package

	Bibliography
	Python Module Index
	Index

